73 research outputs found

    Classes of Multiple Decision Functions Strongly Controlling FWER and FDR

    Full text link
    This paper provides two general classes of multiple decision functions where each member of the first class strongly controls the family-wise error rate (FWER), while each member of the second class strongly controls the false discovery rate (FDR). These classes offer the possibility that an optimal multiple decision function with respect to a pre-specified criterion, such as the missed discovery rate (MDR), could be found within these classes. Such multiple decision functions can be utilized in multiple testing, specifically, but not limited to, the analysis of high-dimensional microarray data sets.Comment: 19 page

    A P-value model for theoretical power analysis and its applications in multiple testing procedures

    Get PDF
    Background: Power analysis is a critical aspect of the design of experiments to detect an effect of a given size. When multiple hypotheses are tested simultaneously, multiplicity adjustments to p-values should be taken into account in power analysis. There are a limited number of studies on power analysis in multiple testing procedures. For some methods, the theoretical analysis is difficult and extensive numerical simulations are often needed, while other methods oversimplify the information under the alternative hypothesis. To this end, this paper aims to develop a new statistical model for power analysis in multiple testing procedures. Methods: We propose a step-function-based p-value model under the alternative hypothesis, which is simple enough to perform power analysis without simulations, but not too simple to lose the information from the alternative hypothesis. The first step is to transform distributions of different test statistics (e.g., t, chi-square or F) to distributions of corresponding p-values. We then use a step function to approximate each of the p-value’s distributions by matching the mean and variance. Lastly, the step-function-based p-value model can be used for theoretical power analysis. Results: The proposed model is applied to problems in multiple testing procedures. We first show how the most powerful critical constants can be chosen using the step-function-based p-value model. Our model is then applied to the field of multiple testing procedures to explain the assumption of monotonicity of the critical constants. Lastly, we apply our model to a behavioral weight loss and maintenance study to select the optimal critical constants. Conclusions: The proposed model is easy to implement and preserves the information from the alternative hypothesis

    Ensemble and fuzzy techniques applied to imbalanced traffic congestion datasets a comparative study

    Get PDF
    Class imbalance is among the most persistent complications which may confront the traditional supervised learning task in real-world applications. Among the different kind of classification problems that have been studied in the literature, the imbalanced ones, particularly those that represents real-world problems, have attracted the interest of many researchers in recent years. In order to face this problems, different approaches have been used or proposed in the literature, between then, soft computing and ensemble techniques. In this work, ensembles and fuzzy techniques have been applied to real-world traffic datasets in order to study their performance in imbalanced real-world scenarios. KEEL platform is used to carried out this study. The results show that different ensemble techniques obtain the best results in the proposed datasets. Document type: Part of book or chapter of boo
    corecore