
AStA Adv Stat Anal (2018) 102:167–178
https://doi.org/10.1007/s10182-017-0297-0

ORIGINAL PAPER

Closure properties of classes of multiple testing procedures

Georg Hahn1

Received: 28 June 2016 / Accepted: 5 April 2017 / Published online: 5 May 2017
© The Author(s) 2017. This article is an open access publication

Abstract Statistical discoveries are often obtained through multiple hypothesis test-
ing. A variety of procedures exists to evaluate multiple hypotheses, for instance the
ones of Benjamini–Hochberg, Bonferroni, Holm or Sidak. We are particularly inter-
ested in multiple testing procedures with two desired properties: (solely) monotonic
and well-behaved procedures. This article investigates to which extent the classes of
(monotonic or well-behaved) multiple testing procedures, in particular the subclasses
of so-called step-up and step-down procedures, are closed under basic set operations,
specifically the union, intersection, difference and the complement of sets of rejected
or non-rejected hypotheses. The present article proves two main results: First, taking
the union or intersection of arbitrary (monotonic orwell-behaved)multiple testing pro-
cedures results in new procedures which are monotonic but not well-behaved, whereas
the complement or difference generally preserves neither property. Second, the two
classes of (solely monotonic or well-behaved) step-up and step-down procedures are
closed under taking the union or intersection, but not the complement or difference.

Keywords Multiple hypothesis testing · Statistical significance · Step-up procedure ·
Set operations · Monotonicity

Mathematics Subject Classification 62G10

1 Introduction

Multiple testing is a widespread tool to evaluate scientific studies (Westfall and Young
1993; Hsu 1996; Hochberg and Tamhane 2008). We are interested in testing m ∈
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168 G. Hahn

N hypotheses H01, . . . , H0m with corresponding p-values p1, . . . , pm for statistical
significance while controlling an error criterion such as the familywise error (FWER)
or the false discovery rate (FDR). Following Gandy and Hahn (2016), we define a
multiple testing procedure as a mapping

h : [0, 1]m × [0, 1] → P({1, . . . ,m})

whose input is a vector of m p-values p ∈ [0, 1]m and a significance level α ∈ [0, 1]
and whose output is the set of indices of rejected hypotheses, where P denotes the
power set.

Many procedures of the above form are available in the literature in order to correct
for multiple tests, for instance the procedures of Bonferroni (1936), Sidak (1967),
Holm (1979), Hochberg (1988) or Benjamini and Hochberg (1995). Many common
procedures, including the ones aforementioned, belong to a certain class of procedures,
called step-up and step-down procedures (Romano and Shaikh 2006). It is assumed
throughout the article that only the m p-values which serve as input to h are used as
a basis for making decisions, dependencies between elementary hypotheses are not
considered explicitly. Apart from defining properties on p imposed by those multi-
ple testing procedures to which the results of this article are applied, no additional
conditions on p are required.

This article focuses on two types of multiple testing procedures: monotonic proce-
dures defined in Roth (1999) and Tamhane and Liu (2008) as well as well-behaved
procedures (Gandy and Hahn 2016). We investigate to which extent the class of solely
monotonic and the class of well-behaved multiple testing procedures is closed under
the computation of the union, intersection, difference or the complement of sets of
rejected or non-rejected hypotheses.

A multiple testing procedure is said to be monotonic if smaller p-values (Tamhane
and Liu 2008) or a higher significance level (Roth 1999) lead to more rejections.
Gandy and Hahn (2016) call a monotonic multiple testing procedure well-behaved
if p-values corresponding to rejected hypotheses can be lowered and p-values corre-
sponding to non-rejected hypotheses can be increased while leaving all rejections and
non-rejections invariant.

For a set of given hypotheses, the closed testing procedure (CTP) of Marcus
et al. (1976) (also referred to as the closure principle) and the partitioning princi-
ple (PP) of Finner and Strassburger (2002) provide means to efficiently construct a
simultaneous hypothesis test controlling the FWER. The CTP is based on enforcing
coherence (Gabriel 1969): An intersection hypothesis HI , that is a hypothesis of the
form HI = ∩i∈I Hi for I ⊆ {1, . . . ,m}, is rejected if and only if all intersection
hypotheses implying HI are rejected by their local tests (Hommel et al. 2007). Many
common procedures such as the one of Holm (1979) can be constructed using the CTP.
The PP divides the parameter space underlying the hypotheses of interest into disjoint
subsets which are then tested independently at level α. Since the partitioned hypothe-
ses are disjoint, no multiplicity correction is necessary and at most one of the mutually
exclusive hypotheses is true. Whereas CTP and PP can only be used to construct pro-
cedures with FWER control, the present article offers a means to combine procedures
controlling several criteria such as the FDR into one procedure (see the example in
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Sect. 4.5). In case of the CTP, the exponential number of tests to be carried out might
also pose a problem: The present article considers the direct construction of step-up
and step-down procedures which allow for efficient testing of multiple hypotheses.

The motivation for the present article is as follows:

1. Investigating closure properties (in a set theoretical sense) of a class, in the case
of the present article certain classes of multiple testing procedures, is of interest
in its own right: The closure of step-up and step-down procedures allows us to
construct new multiple testing procedures of the same (step-up/step-down) form
from existing ones; moreover, the resulting procedure will be given explicitly.

2. Being able to perform set operations with multiple testing procedures is useful
in practice: Many multiple testing procedures exist to test hypotheses according
to various criteria, each of which might prove beneficial in certain applications.
Whereas hypotheses can also be tested sequentially using several procedures, it is
non-trivial a priori that procedures can be combined to test multiple hypotheses in
a single run while drawing benefits of several criteria simultaneously. This feature
is similar to using (stepwise) “shortcut procedures” (Romano and Wolf 2005;
Hommel et al. 2007) which aim to reduce the (potentially) exponential number of
tests required by the CTP for FWER control to a polynomial number of tests.

3. Monotonic and well-behaved procedures have already been of interest in the liter-
ature. For instance, Gordon (2007) uses the idea of monotonicity to show that there
is no monotonic step-up procedure which improves upon the Bonferroni (1936)
procedure in the sense that it always returns the same rejections or possibly more.
Gordon and Salzman (2008) show that the classical Holm (1979) procedure dom-
inates all monotonic step-down multiple testing procedures in the above sense.
Proving that certain classes of procedures (for instance, monotonic procedures)
are closed renders the applicability of known results more apparent.

4. The results discussed in this paper extend themethodology developed inGandy and
Hahn (2014) andGandyandHahn (2016)which relies onwell-behavedprocedures.
Briefly, the authors consider a scenario in which the p-value underlying each
hypothesis is unknown, but can be estimated through Monte Carlo samples drawn
under the null, for instance using bootstrap or permutation tests. Instead of using
estimated p-values to obtain ad hoc decisions on all hypotheses, the authors prove
that it is possible to improve existing algorithms designed for Monte Carlo-based
multiple testing (Besag and Clifford 1991; Lin 2005; Wieringen et al. 2008; Guo
and Peddada 2008; Sandve et al. 2011): the proposed modifications guarantee that
the test results of published algorithms are identical (up to an error probability
pre-specified by the user) to the ones obtained with the unknown p-values. This
ensures the repeatability and objectivity of multiple testing results even in the
absence of p-values.

The article is structured as follows. Section 2 provides formal definitions of the
two properties of a multiple testing procedure under investigation. Section 3 considers
arbitrary (solely monotonic or well-behaved) multiple testing procedures and demon-
strates that solely the monotonicity is preserved when taking unions and intersections.
The difference and complement are neither monotonic nor well-behaved. Section 4
focuses on step-up and step-down procedures and shows that both classes of (solely
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170 G. Hahn

monotonic or well-behaved) step-up and step-down procedures are closed under the
union or intersection operation, but not the complement or difference. The article
concludes with a short discussion in Sect. 5. All proofs are given in Appendix 6. In
the entire article, | · | and ‖ · ‖ denote the absolute value and the Euclidean norm,
respectively, and M := {1, . . . ,m}.

2 Basic definitions

Consider a step-up (hu) and step-down (hd ) procedure

hu(p, α) = {
i ∈ {1, . . . ,m} : pi ≤ max{p( j) : p( j) ≤ τα( j)}} ,

hd(p, α) = {
i ∈ {1, . . . ,m} : pi < min{p( j) : p( j) > τα( j)}} ,

returning the set of indices of rejected hypotheses (Gandy and Hahn 2016), where
p(1) ≤ p(2) ≤ · · · ≤ p(m) refers to the ordered p-values. Any procedure of the above
form is fully characterised by a threshold function τα : {1, . . . ,m} → [0, 1] returning
the critical value τα(i) each p(i) is compared to. A step-up procedure first determines
the largest j ∈ M such that the p-value p( j) lies below τα( j) and then rejects all
hypotheses having p-values up to p( j). Likewise, a step-down procedure non-rejects
all those hypotheses with p-values larger or equal to the smallest p-value above the
threshold function.

We now consider two useful properties of arbitrary multiple testing procedures.
The first one, monotonicity, states that smaller p-values (Tamhane and Liu 2008) or a
higher significance level (Roth 1999) lead to more rejections:

Definition 1 A multiple testing procedure h is monotonic if h(p, α) ⊆ h(q, α′) for
p ≥ q and α ≤ α′.
Themonotonicity in α introduced by Roth (1999), also called α-consistency (Hommel
and Bretz 2008), is a natural property desired for any testing procedure since testing at
a more stringent significance level should never result in more rejections (Dmitrienko
and Tamhane 2013).

Gandy andHahn (2016) introduce another useful property, the class ofwell-behaved
multiple testing procedures. Such procedures, in connection with a generic algorithm
presented in Gandy and Hahn (2016), allow to use p-value estimates obtained with
independent samples under the null to compute test results which are proven to be
identical (up to a pre-specified error probability) to the ones obtainedwith the unknown
p-values. A monotonic multiple testing procedure h is well-behaved if it additionally
satisfies the following condition.

Condition 1 1. Let p, q ∈ [0, 1]m and α ∈ R . If qi ≤ pi ∀i ∈ h(p, α) and qi ≥ pi
∀i /∈ h(p, α), then h(p, α) = h(q, α).

2. Fix p∗ ∈ [0, 1]m and α∗ ∈ [0, 1]. Then, there exists δ > 0 such that p ∈ [0, 1]m,
α ∈ [0, 1] and max(‖p − p∗‖, |α − α∗|) < δ imply h(p, α) = h(p∗, α∗).
Well-behaved procedures stay invariant if rejected (non-rejected) p-values are

replaced by smaller (larger) values. Moreover, well-behaved procedures are constant
on a δ-neighbourhood around fixed inputs p∗ and α∗.
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The level α is a parameter in Condition 1 to account for settings in which α is
unknown a-priori: This can occur, for instance, when the significance level depends
on an estimate of the proportion of true null hypotheses which is often a functional
of p (Gandy and Hahn 2016, Sect. 2.2). Condition 1 is a generalisation of (Gandy
and Hahn 2014, Condition 1) which states the same invariance property for the case
that α is a given constant: In this case, h is solely a function of p and the condition
|α − α∗| < δ in the second part of Condition 1 can be ignored.

3 Arbitrary multiple testing procedures

We define the union, intersection, difference and the complement of two procedures
to be the equivalent operations on the sets of rejected hypotheses returned by the two
procedures. Formally, for two multiple testing procedures h1 and h2 we define

h1 ∪ h2 : [0, 1]m × [0, 1] → P({1, . . . ,m}),
h1 ∪ h2(p, α) := h1(p, α) ∪ h2(p, α),

and similarly h1 ∩ h2, h1\h2 and the complement hi (p, α)c := {1, . . . ,m}\hi (p, α),
where i ∈ {1, 2}.

In what follows, we sometimes drop the dependence of h(p, α) on p, on α, or on
both parameters. The following lemma summarises the results.

Lemma 1 Let h1 and h2 be two well-behaved multiple testing procedures.

1. h1 ∪ h2 and h1 ∩ h2 are monotonic and satisfy part 2. of Condition 1.
2. hi (p, α)c and h1\h2 are not monotonic, i ∈ {1, 2}.
As well-behaved procedures are also monotonic, the complement or difference of

two procedures is also not well-behaved.
Although by Lemma 1, both the union and the intersection are monotonic, they do

not necessarily allow to lower the p-values of rejected hypotheses or to increase the
p-values of non-rejected hypotheses (first part of Condition 1) as demonstrated in the
following two counterexamples.

Example 1 Let p∗ = (0.034, 0.06, 1) and α∗ = 0.1. Let h1 be the Benjamini and
Hochberg (1995) step-up procedure, h2 be the Sidak (1967) step-down procedure
and h(p, α) = h1(p, α) ∩ h2(p, α). Then, h1(p∗, α∗) = {1, 2}, h2(p∗, α∗) = {1}
and thus 2, 3 /∈ h(p∗, α∗). However, increasing p∗ to q = (0.034, 1, 1) results in
h1(q, α∗) = ∅ and thus h(q, α∗) = ∅ �= h(p∗, α∗).

Example 2 Let p∗ and α∗ be as in Example 1. Let h1 be a step-up procedure
which uses the same threshold function as the (step-down) Sidak (1967) correc-
tion, and likewise h2 be a step-down procedure using the same threshold function
as the (step-up) Benjamini and Hochberg (1995) procedure—using (Gandy and Hahn
2016, Lemma 3), it is straightforward to show that both procedures are well-behaved.
Let h(p, α) = h1(p, α) ∪ h2(p, α). Then, h1(p∗, α∗) = {1}, h2(p∗, α∗) = ∅
and thus h(p∗, α∗) = {1}. However, decreasing p∗ to q = (0, 0.06, 1) results in
h2(q, α∗) = {1, 2} and thus h(q, α∗) = {1, 2} �= h(p∗, α∗).
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172 G. Hahn

Examples 1 and 2 also demonstrate that both the union and the intersection of a
well-behaved step-up and a well-behaved step-down procedure are not necessarily
well-behaved any more.

Although neither the class of well-behaved multiple testing procedures of general
form nor the combination of a well-behaved step-up and a well-behaved step-down
procedure is closed under the four set operations aforementioned, the next section
proves that this holds true for the special classes of well-behaved step-up and step-
down procedures individually (when taking unions and intersections).

4 Step-up and step-down procedures

Gandy and Hahn (2016) show that any step-up or step-down procedure (characterised
by its threshold function τα) which satisfies the following condition is well-behaved:

Condition 2 1. τα(i) is non-decreasing in i for each fixed α.
2. τα(i) is continuous in α and non-decreasing in α for each fixed i .

Furthermore,Gandy andHahn (2016) verify that a large variety of commonly used pro-
cedures satisfies Condition 2 and is hence well-behaved, among them the procedures
of Bonferroni (1936), Sidak (1967), Holm (1979), Hochberg (1988) or Benjamini and
Hochberg (1995).

Even though (Gandy and Hahn 2016, Lemma 3) only prove that Condition 2 is
sufficient for a procedure to be well-behaved, the condition is actually also necessary:

Lemma 2 Any well-behaved step-up or step-down procedure satisfies Condition 2.

Consider two step-up procedures hu and h̃u with threshold functions τ uα and τ̃ uα as
well as two step-down procedures hd and h̃d with threshold functions τ dα and τ̃ dα .

In the following subsections, we separately investigate whether the classes of step-
up (step-down) procedures are closed under each of the four set operations (union,
intersection, difference and complement). Moreover, we investigate whether the sub-
classes of well-behaved step-up (step-down) procedures are closed. To this end, by
Lemma 2, it suffices to show that the classes of step-up (step-down) procedures satis-
fying Condition 2 are closed.

4.1 Union

The class of step-up procedures is closed under the union operation: To be precise,
if hu and h̃u are two step-up procedures, their union is computed by another step-up
procedure h with threshold function τα(i) = max(τ uα (i), τ̃ uα (i)) as visualised in Fig. 1
(left).

This is seen as follows: As τ uα (i), τ̃ uα (i) ≤ τα(i) for all i ∈ M , all hypotheses
rejected by either hu or h̃u are also rejected by h, that is hu ∪ h̃u ⊆ h. Likewise, as
τα(i) takes precisely one of the values τ uα (i) or τ̃ uα (i) for each i ∈ M , any p-value
belonging to the non-rejection area of both procedures hu and h̃u also stays non-
rejected in h, hence (hu)c ∩ (h̃u)c ⊆ hc.
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Fig. 1 Combined threshold function (bold) for the computation of the union (left) and the intersection
(right) of the Bonferroni (1936) correction (vertical solid line) and the Hochberg (1988) (dashed line)
procedure. The Bonferroni (1936) correction was applied with significance level 0.2, the Hochberg (1988)
procedure with level 0.1. p-values of rejected (crosses) and non-rejected (triangles) hypotheses

Moreover, the subclass of well-behaved step-up procedures is also closed under the
union operation as proven in the following lemma.

Lemma 3 If hu and h̃u are two step-up procedures which satisfy Condition 2 then so
does the union hu ∪ h̃u .

Similarly, the union of two step-down procedures hd and h̃d (having threshold
functions τ dα and τ̃ dα ) is obtained through another step-down procedure characterised
by the threshold function τα(i) = max(τ dα (i), τ̃ dα (i)). Since the proof of Lemma 3
does not use any properties of τ uα and τ̃ uα other than that both satisfy Condition 2, the
maximum of two step-down threshold functions likewise leads to a threshold function
satisfying Condition 2.

4.2 Intersection

Similarly to Sect. 4.1, the intersection of two step-up procedures hu and h̃u is
again a step-up procedure h, characterised by the new threshold function τα(i) =
min(τ uα (i), τ̃ uα (i)) as visualised in Fig. 1 (right).

This is seen as follows: As τ uα (i), τ̃ uα (i) ≥ τα(i) for all i ∈ M , any hypothesis non-
rejected by either procedure hu or h̃u is also non-rejected by h, that is (hu)c ∪ (h̃u)c ⊆
hc. Likewise, as τα(i) takes precisely one of the values τ uα (i) or τ̃ uα (i) for each i ∈ M ,
any p-value in the rejection area of both procedures remains rejected when tested with
h, thus hu ∩ h̃u ⊆ h.

Similarly to Lemma 3, the subclass of well-behaved step-up procedures is again
closed under the intersection operation.

Lemma 4 If hu and h̃u are two step-up procedures which satisfy Condition 2 then so
does the intersection hu ∩ h̃u .

The intersection of two step-down procedures hd and h̃d is again obtained with
another step-down procedure using the threshold function τα(i) = min(τ dα (i), τ̃ dα (i)).
Analogously to Sect. 4.1, the proof of Lemma 4 does not use any properties of τ uα
and τ̃ uα other than that both satisfy Condition 2, thus the minimum of two step-down
threshold functions again leads to a threshold function satisfying Condition 2.
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174 G. Hahn

4.3 Complement

Whereas the complement is generally neither well-behaved nor monotonic, it can be
computed for step-up and step-down procedures using the following construction.

Let α be a known constant. We re-consider the step-up procedure hu with threshold
function τ uα . Then, the step-down procedure h

d(1− p)with threshold function τ dα (i) =
1− τ uα (m+1− i) applied to 1− p (instead of p) computes the complement of hu(p),
where 1 − p for p ∈ [0, 1]m is understood coordinate-wise.

The reasoning behind this is as follows: For any hypothesis with p-value p(i) below
τ uα (i), 1− p(i) (having rankm+1− i in the sorted sequence of values 1− p) is above
τ dα (m + 1 − i) by construction of τ dα . Therefore, all former rejections of hu turn into
non-rejections of hd and vice versa.

Likewise, the complement of a step-down procedure hd with threshold function
τ dα and constant α is computed by a step-up procedure hu with threshold function
τ uα (i) = 1 − τ dα (m + 1 − i). Condition 2 is again satisfied:

Lemma 5 Let α be a known constant. If the step-up procedure hu with threshold
function τ uα satisfies Condition 2, then so does its step-down complement hd (defined
with threshold function τ dα (i) = 1 − τ uα (m + 1 − i)).

The requirement thatα be a known constant is crucial since τ dα is not non-decreasing
in α for a fixed i as required in the second part of Condition 2. However, Lemma 5
is made possible by the fact that for a given constant α (that is, if h and the thresh-
old function seize to be a function of α), all the parts in Condition 1 (and likewise,
Condition 2) which involve α can be ignored (see remark at the end of Sect. 2).

4.4 Difference

Following the notation of Sect. 3, the difference h1\h2 of two procedures h1 and h2
can equivalently be written as h1 ∩ hc2 using the complement of h2. If h2 is a step-up
procedure, hc2 turns into a step-down procedure (see Sect. 4.3).

Therefore, in case both h1 and h2 are step-up (step-down) procedures satisfying
Condition 2, Lemma 1 yields that h1\h2 is still monotonic but not well-behaved any
more. However, if h1 is a step-down and h2 is a step-up procedure (or vice versa), the
results from Sect. 4.2 apply and yield that h1\h2 a well-behaved step-up/step-down
procedure with explicit threshold function.

4.5 Example

Suppose we are interested in testing H01, . . . , H0m for statistical significance while
ensuring FDR control at a pre-specified level 0.05, for instance using the Benjamini
and Hochberg (1995) procedure. Additionally, we are interested in only selecting
those k ∈ N hypotheses having the lowest p-values (assuming there are no ties),
for instance due to the fact that budget constraints only allow follow-up studies for
k hypotheses. We thus look to construct an intersection procedure which returns the
indices of hypotheses satisfying both requirements simultaneously.
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To this end, let h1 be theBenjamini andHochberg (1995) step-up procedure control-
ling the FDR at level 0.05, defined through the threshold function τ 1(i) = 0.05 · i/m
for i ∈ {1, . . . ,m}.Moreover, let h2 be the (step-up) Bonferroni (1936) correctionwith
constant but p-dependant threshold function τ 2p(i) = p(k) for i ∈ {1, . . . ,m}, where
p(k) denotes the k’th smallest entry of vector p = (p1, . . . , pm). By construction, all
rejected hypotheses by h2 are precisely the ones with the k lowest p-values. Threshold
functions τα for which α = α(p) is a function of p are widely used in practice, for
instance when using an estimate of the proportion of true null hypotheses to correct the
level α (see, for instance, Example 1 in Gandy and Hahn (2016)). Both the Benjamini
and Hochberg (1995) procedure h1 and the Bonferroni (1936) correction h2 satisfy
Condition 2 and are thus well-behaved.

Following Sect. 4.2, the step-up procedure h defined through the threshold function
τp(i) = min(τ 1(i), τ 2p(i)) = min(0.05 · i/m, p(k)) computes h1 ∩ h2. Moreover, h is
well-behaved by Lemma 4.

Consider the numerical example of 15 ordered p-values (here denoted as p̃) given
in Sect 3.2 of Benjamini and Hochberg (1995). In agreement with Benjamini and
Hochberg (1995), who test p̃ while controlling the FDR at level 0.05 and observe four
rejections (of the first four hypotheses), h1 applied to p̃ yields h1( p̃) = {1, 2, 3, 4}.
Applying the intersection procedure h constructed above with k = 3 to p̃ yields
h( p̃) = {1, 2, 3}, that is h indeed yields those k = 3 hypotheses having the lowest
p-values which are also significant under FDR control at level 0.05.

5 Discussion

This article investigates closure properties of general multiple testing procedures,
step-up and step-down procedures as well as subclasses of (solely) monotonic and
well-behaved procedures under four set operations (union, intersection, complement
and difference).

The article shows that for general multiple testing procedures, solely the class of
monotonic procedures is closed under taking the union and intersection. However, the
subclass of well-behaved step-up (step-down) procedures is closed under taking the
union and intersection.

The implications of the closure properties proven in this article are threefold: They
provide a tool to construct new procedures of known form and with known properties,
they render theoretical results (Gordon 2007; Gordon and Salzman 2008) instantly
applicable to a large class of multiple testing procedures and they allow to combine
the benefits of various multiple testing procedures in practice.
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6 Appendix: Proofs

The appendix contains all proofs sorted by section.

6.1 Proofs of Section 3

Proof of Lemma 1 We prove both assertions.

1. Monotonicity. If p ≤ q and α ≤ α′ then h1(q, α) ⊆ h1(p, α′), h2(q, α) ⊆
h2(p, α′) and thush1(q, α)∪h2(q, α) ⊆ h1(p, α′)∪h2(p, α′) aswell ash1(q, α)∩
h2(q, α) ⊆ h1(p, α′) ∩ h2(p, α′).
The second statement of Condition 1. As h1 satisfies Condition 1, there exists δ1
such that max(‖p− p∗‖, |α−α∗|) < δ1 implies h1(p, α) = h1(p∗, α∗). Likewise
for h2 with a suitable δ2. For δ = min(δ1, δ2) andmax(‖p− p∗‖, |α−α∗|) < δ, we
have h1(p, α) = h1(p∗, α∗) and h2(p, α) = h2(p∗, α∗) and thus h1∪h2(p, α) =
h1 ∪ h2(p∗, α∗). Likewise for the intersection.

2. Fix α. If q ≤ p then hi (p, α) ⊆ hi (q, α), but hi (p, α)c ⊇ hi (q, α)c for i ∈
{1, 2}. The complement is thus not monotonic. The operation h1(p, α)\h2(p, α)

is equivalent to h1(p, α) ∩ (h2(p, α))c and thus also not monotonic.

6.2 Proofs of Section 4

Proof of Lemma 2 Let h be a step-up (step-down) procedure characterised through its
threshold function τα . We now verify Condition 2.

1. We show that τα(i) must be non-decreasing in i for a fixed α. Indeed, suppose τα

is decreasing for some i . Then, h cannot be monotonic for all inputs: Assume that
m = 2, p = (0.5, 0.5) and h is of step-up type with τα(1) = 1 and τα(2) = 0.
Then, h(p) = {1} but increasing p to q = (1, 0.5) results in h(q) = {2} � h(p),
thus contradicting monotonicity.

2. We show that τα(i) must also be non-decreasing in α for any fixed i . Indeed, for a
fixed i , suppose τα(i) > τα′(i) for α < α′. Then, h can again not be monotonic for
all inputs:Assumewe testm = 1hypothesis H01 withp-value p = τα(1) > τα′(1).
Then, H01 is rejected at τα(1) but non-rejected at τα′(1) even though α < α′, thus
contradicting monotonicity.

3. We show that τα(i) is continuous in α for a fixed i . Let ε > 0 be given. Fix i and
α∗. We show continuity of the threshold function at α∗ as α → α∗.
Case 1: α∗>α. Then, τα∗(i) ≥ τα(i) by monotonicity. Define p∗ = (0, . . . , 0, p∗

i ,

1, . . . , 1) for any p∗
i ∈ [0, τα∗(i)) (i.e., p∗ contains p∗

i as i th entry, zeros before
and ones after). Since h is well-behaved it satisfies the second part of Condition 1,
hence for the fixed p∗ and α∗ there exists δ > 0 such that for all α and p satisfying
|α −α∗| < δ, ‖p− p∗‖ < δ we have h(p, α) = h(p∗, α∗). Assume |α −α∗| < δ.
Define p = (0, . . . , 0, p∗

i − γ, 1, . . . , 1) for any 0 < γ < min(δ, ε). Since
|α − α∗| < δ and ‖p − p∗‖ = γ < δ, h(p, α) = h(p∗, α∗) by Condition 1: As
the i th hypothesis is rejected in h(p∗, α∗) and hence also in h(p, α), it follows
that τα∗(i) ≥ τα(i) ≥ pi = p∗

i − γ . This holds true for all p∗
i ∈ [0, τα∗(i)), thus
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τα∗(i) ≥ τα(i) ≥ τα∗(i) − γ and hence |τα∗(i) − τα(i)| ≤ γ < ε.
Case 2: α∗ ≤ α. Then, τα∗(i) ≤ τα(i). Using p∗ = (0, . . . , 0, p∗

i , 1, . . . , 1) with
p∗
i ∈ (τα∗(i), 1] and p = (0, . . . , 0, p∗

i + γ, 1, . . . , 1) with 0 < γ < min(δ, ε),
the same argument as in Case 1 yields τα∗(i) ≤ τα(i) < τα∗(i) + γ .

Proof of Lemma 3 Let h = hu ∪ h̃u be defined through the threshold function τα(i) =
max(τ uα (i), τ̃ uα (i)). First, h is monotonic by Lemma 1. We now verify Condition 2.

1. The function τα(i) is non-decreasing in i : Suppose w.l.o.g. τα(i) = τ uα (i). If
τ uα (i +1) ≥ τ̃ uα (i +1) then τα(i) = τ uα (i) ≤ τ uα (i +1) = τα(i +1) by definition of
τα as the maximum of τ uα and τ̃ uα . If τ uα (i + 1) < τ̃ uα (i + 1) then τα(i) = τ uα (i) ≤
τ uα (i + 1) < τ̃ uα (i + 1) = τα(i + 1).

2. τα is continuous in α as the maximum of two continuous functions (in this case
in α) is continuous. The function τα is also non-decreasing in α: Indeed, fix i ,
let α ≤ α′ and suppose w.l.o.g. τα(i) = τ uα (i). If τ u

α′(i) ≤ τ̃ u
α′(i) then τα(i) =

τ uα (i) ≤ τ u
α′(i) ≤ τ̃ u

α′(i) = τα′(i) by definition of τα as the maximum of τ uα and
τ̃ uα . Otherwise, τα(i) = τ uα (i) ≤ τ u

α′(i) = τα′(i).

Proof of Lemma 4 Let h = hu ∩ h̃u be defined through the threshold function τα(i) =
min(τ uα (i), τ̃ uα (i)). Again, h is monotonic by Lemma 1. We now verify Condition 2.

1. The function τα(i) is non-decreasing in i : Suppose w.l.o.g. τα(i) = τ uα (i). If
τ uα (i + 1) ≥ τ̃ uα (i + 1) then τα(i) = τ uα (i) ≤ τ̃ uα (i) ≤ τ̃ uα (i + 1) = τα(i + 1)
by definition of τα as the minimum of τ uα and τ̃ uα . If τ uα (i + 1) < τ̃ uα (i + 1) then
τα(i) = τ uα (i) ≤ τ uα (i + 1) = τα(i + 1).

2. τα is continuous in α as the minimum of two continuous functions (in this case
in α) is continuous. The function τα is also non-decreasing in α: Indeed, fix i ,
let α ≤ α′ and suppose w.l.o.g. τα(i) = τ uα (i). If τ u

α′(i) ≤ τ̃ u
α′(i) then τα(i) =

τ uα (i) ≤ τ u
α′(i) = τα′(i). Otherwise, τα(i) = τ uα (i) ≤ τ̃ uα (i) ≤ τ̃ u

α′(i) = τα′(i) (by
definition of τα as the minimum).

Proof of Lemma 5 Since τ uα (i) is non-decreasing in i , it is immediate to verify that
τ dα (i) is also non-decreasing in i . For a given constant α, the second part of Condi-
tion 2 can be ignored as shown in (Gandy and Hahn 2014, Condition 1) and is hence
automatically satisfied (see Sect. 2).
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