2,124 research outputs found

    Crystallization of a Mos1 transposase-inverted-repeat DNA complex: biochemical and preliminary crystallographic analyses

    Get PDF
    A complex formed between Mos1 transposase and its inverted-repeat DNA has been crystallized. The crystals diffract to 3.25 Å resolution and exhibit monoclinic (P2(1)) symmetry, with unit-cell parameters a = 120.8, b = 85.1, c = 131.6 Å, ÎČ = 99.3°. The X-ray diffraction data display noncrystallographic twofold symmetry and characteristic dsDNA diffraction at ∌3.3 Å. Biochemical analyses confirmed the presence of DNA and full-length protein in the crystals. The relationship between the axis of noncrystallographic symmetry, the unit-cell axes and the DNA diffraction pattern are discussed. The data are consistent with the previously proposed model of the paired-ends complex containing a dimer of the transposase

    Two mechanisms for optic flow and scale change processing of looming

    Full text link
    Published in final edited form as: J Vis. ; 11(3): . doi:10.1167/11.3.5.The detection of looming, the motion of objects in depth, underlies many behavioral tasks, including the perception of self-motion and time-to-collision. A number of studies have demonstrated that one of the most important cues for looming detection is optic flow, the pattern of motion across the retina. Schrater et al. have suggested that changes in spatial frequency over time, or scale changes, may also support looming detection in the absence of optic flow (P. R. Schrater, D. C. Knill, & E. P. Simoncelli, 2001). Here we used an adaptation paradigm to determine whether the perception of looming from optic flow and scale changes is mediated by single or separate mechanisms. We show first that when the adaptation and test stimuli were the same (both optic flow or both scale change), observer performance was significantly impaired compared to a dynamic (non-motion, non-scale change) null adaptation control. Second, we found no evidence of cross-cue adaptation, either from optic flow to scale change, or vice versa. Taken together, our data suggest that optic flow and scale changes are processed by separate mechanisms, providing multiple pathways for the detection of looming.We thank Jonathan Victor and the anonymous reviewers of the paper for feedback and suggestions regarding the stimuli used here. This work was supported by NIH grant R01NS064100 to LMV. (R01NS064100 - NIH)Accepted manuscrip

    Sulfatizing Roasting of a Copper Sulfide Ore

    Get PDF
    At present copper sulfide ores are recovered by pyrometallurgical processes. While the recovery of cop­per from sulfide ores by hydrometallurgical means has long been considered attractive, the impurities, low re­covery and mechanical difficulties have kept this process from becoming commercial

    Deficit of temporal dynamics of detection of a moving object during egomotion in a stroke patient: a psychophysical and MEG study

    Full text link
    To investigate the temporal dynamics underlying object motion detection during egomotion, we used psychophysics and MEG with a motion discrimination task. The display contained nine spheres moving for 1 second, eight moved consistent with forward observer translation, and one (the target) with independent motion within the scene (approaching or receding). Observers's task was to detect the target. Seven healthy subjects (7HS) and patient PF with an infarct involving the left occipital-temporal cortex participated in both the psychophysical and MEG study. Psychophysical results showed that PF was severely impaired on this task. He was also impaired on the discrimination of radial motion (with even poorer performance on contraction) and 2D direction as well as on detecting motion discontinuity. We used anatomically constrained MEG and dynamic Granger causality to investigate the direction and dynamics of connectivity between the functional areas involved in the object-motion task and compared the results of 7HS and PF. The dynamics of the causal connections among the motion responsive cortical areas (MT, STS, IPS) during the first 200 ms of the stimulus was similar in all subjects. However, in the later part of the stimulus (>200 ms) PF did not show significant causal connections among these areas. Also the 7HS had a strong, probably attention modulatory connection, between MPFC and MT, which was completely absent in PF. In PF and the 7HS, analysis of onset latencies revealed two stages of activations: early after motion onset (200–400 ms) bilateral activations in MT, IPS, and STS, followed (>500 ms) by activity in the postcentral sulcus and middle prefrontal cortex (MPFC). We suggest that the interaction of these early and late onset areas is critical to object motion detection during self-motion, and disrupted connections among late onset areas may have contributed to the perceptual deficits of patient PF.Published versio

    TiB_2 and ZrB_2 diffusion barriers in GaAs Ohmic contact technology

    Get PDF
    The transition metal diboride compounds, ZrB_2 and TiB_2, interposed between Ni/Ge/Au Ohmic contact metallization on n‐type GaAs wafers and an overlying thick Au contact layer, have been investigated to evaluate their effectiveness in stabilizing the Ohmic contact by limiting the in‐diffusion of Au. All of the metal layers were e‐beam deposited except the ZrB_2 which was rf‐diode sputtered. The barrier layer thicknesses were 50 and 100 nm for the TiB_2 and the ZrB_2, respectively. Postdeposition alloying of the contacts was performed at 400, 425, or 450 °C. Auger electron spectroscopy depth profiling of the resultant Ohmic contacts demonstrates that the barrier layers effectively preclude penetration of Au to the Ohmic contact structure. Specific contact resistivities for such contacts are in the low 10^(−7) Ω cm^2 range; although some degradation of the contact resistivity is observed after long term annealing, the values of resistivities do not exceed 1.5×10^(−6) Ω cm^2 after 92 h at 350 °C

    Open vs.Closed standards for ambient intelligence: an exploratory study of adoption

    Get PDF
    Emerging forms of structurally complex information systems, such as Ambient Intelligence (AmI), requires the integration of a range of technologies. To enable such systems’ development there is a reliance on interoperability standards. However, due to their inherent characteristics, the adoption of open or closed standards by technology vendors can have impacts the later stages of the adoption and diffusion of systems. This paper reports on research-in-progress which explores the adoption of open and closed standards by technology vendors engaged in AmI development. Existing models of innovation adoption and diffusion fail to adequately account for adoption in more complex technological contexts. In order to address such deficiencies, current perspectives on standards are discussed, before a conceptual framework for structuring the research is proposed which integrates both existing adoption theory and standards-oriented research. The use of the European Consumer Electronics sector as a unit of analysis is discussed, before concluding with an overview of how the study will progress

    A two-fluid model describing the finite-collisionality, stationary Alfvén wave in anisotropic plasma

    Get PDF
    The stationary inertial AlfvĂ©n (StIA) wave (Knudsen, 1996) was predicted for cold, collisionless plasma. The model was generalized (Finnegan et al., 2008) to include nonzero values of electron and ion collisional resistivity and thermal pressure. Here, the two-fluid model is further generalized to include anisotropic thermal pressure. A bounded range of values of parallel electron drift velocity is found that excludes periodic stationary AlfvĂ©n wave solutions. This exclusion region depends on the value of the local AlfvĂ©n speed VA, plasma beta perpendicular to the magnetic field ÎČ⊄ and electron temperature anisotropy

    Impact of SARS-CoV-2 (COVID-19) pandemic on patients with lysosomal storage disorders and restoration of services: experience from a specialist centre

    Get PDF
    This study aims to evaluate the impact of the COVID-19 pandemic on the lysosomal disorders unit (LSDU) at Royal Free London NHS Foundation Trust (RFL), a highly specialised national service for diagnosis and management of adults with lysosomal storage disorders (LSD). Review of home care enzyme replacement therapy (ERT) and emergency care, and COVID-19 shielding categories as per UK government guidance. New clinical pathways were developed to manage patients safely during the pandemic; staff well-being initiatives are described. LSDU staff were redeployed and/or had additional roles to support increased needs of hospitalised COVID-19 patients. During the first lockdown in March 2020, 286 of 602 LSD patients were shielding; 72 of 221 had home care ERT infusions interrupted up to 12 weeks. During the pandemic, there was a 3% reduction in home care nursing support required, with patients learning to self-cannulate or require support for cannulation only. There were no increased adverse clinical events during this period. Twenty-one contracted COVID-19 infection, with one hospitalised and no COVID-19 related deaths. In 2020, virtual clinics were increased by 88% (video and/or telephone) compared to 2019. RFL well-being initiatives supported all staff. We provide an overview of the impact of the COVID-19 pandemic on staff and patients attending a highly specialised rare disease service. As far as we are aware, this is the first detailed narrative on the challenges and subsequent rapid adaptations made, both as part of a large organisation and as a specialist centre. Lessons learnt could be translated to other rare disease services and ensure readiness for any future pandemic
    • 

    corecore