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Abstract. The stationary inertial Alfv́en (StIA) wave (Knud-
sen, 1996) was predicted for cold, collisionless plasma. The
model was generalized (Finnegan et al., 2008) to include
nonzero values of electron and ion collisional resistivity and
thermal pressure. Here, the two-fluid model is further gen-
eralized to include anisotropic thermal pressure. A bounded
range of values of parallel electron drift velocity is found that
excludes periodic stationary Alfvén wave solutions. This ex-
clusion region depends on the value of the local Alfvén speed
VA, plasma beta perpendicular to the magnetic fieldβ⊥ and
electron temperature anisotropy.

1 Introduction

The existence of low-frequency (wave frequencyω much
smaller than the ion cyclotron frequencyωci) magne-
tohydrodynamic waves with parallel wave phase speed
VA≡B0/

√
µ0min was first predicted by Hannes Alfvén in

1942 (Alfv én, 1942) (mi is the ion mass,n is the plasma
density andB0 is the background magnetic field). For
large wavelengthsλ⊥ perpendicular toB0, the parallel elec-
tric field is insignificantly small and incapable of acceler-
ating electrons producing current-induced perturbations to
the background magnetic field. For the shear-mode Alfvén
wave, ion polarization current in the direction perpendicular
to B0 is balanced by magnetic-field-aligned current (i.e., par-
allel) carried by electrons. Whenλ⊥ becomes small, com-
parable to the electron inertial lengthλe≡c/ωpe for the case
whenβ<me/mi (β=kinetic pressure normalized to magnetic
field pressure), or comparable to the ion acoustic gyroradius
ρs=

√
Te‖/mi/ωci in higher-β plasma, the parallel electric
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field becomes significant and the wave becomes dispersive
(Goertz and Boswell, 1979; Hasegawa and Uberoi, 1982). In
this small-λ⊥ limit, parallel electron acceleration can result
in significant perturbationsδB to the background magnetic
field B0. Waves in the low-β and high-β limits are termed
“inertial” and “kinetic”, respectively, and together they are
known as a dispersive Alfv́en wave (e.g.,Stasiewicz, 2005).
The dispersive Alfv́en wave has been studied extensively
because of its possible role in accelerating electrons in the
Earth’s magnetosphere, particularly the auroral ionosphere,
where the inertial wave can generate transient (∼1 s) bursts
of electron energy at energies up to∼1 keV (e.g.,Hui and
Seyler, 1992; Kletzing, 1994; Lysak and Song, 2003; Chas-
ton et al., 2004; Seyler and Liu, 2007). The dispersive Alfv́en
wave also leads to electron acceleration as a result of inter-
hemispheric field-line resonances having periods of∼10 min
(e.g.,Streltsov and Lotko, 1995; Rankin et al., 1999). See the
comprehensive review byStasiewicz et al.(2000). The lin-
ear dispersion relation for the dispersive Alfvén wave in both
the inertial and kinetic limits has been verified in laboratory
experiments (e.g.,Allen et al., 1959; Jephcott, 1959; Wilcox
et al., 1960; Jephcott and Stocker, 1962; Gekelman et al.,
1997; Leneman et al., 1999; Vincena et al., 2004).

The dispersive Alfv́en wave can be described in the con-
text of two-fluid theory. Linear properties are derived by
neglecting the nonlinear termv·∇ of the complete time-
derivative operator (d/dt=∂/∂t+v·∇). Seyler and Wahlund
(1995) predicted that inclusion of this nonlinearity leads to
Alfv én wave steepening, wave breaking, and enhanced wave
dissipation. Those authors also found a solution predicting
a purely spatial perturbation in plasma density in the zero-
frequency limit.

It is often convenient to study nonlinear waves in the
reference frame in which the wave is stationary. In the
wave-stationary frame, having velocityVf r=Vph=(ω/k)k̂,
with respect to the lab frame, the wave does not fluctuate
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in time so the total time derivative isd/dt=−Vph·∇ and
∇×E=−∂B/∂t=0. A plasma speciesj which is drifting
in the lab-frame with velocityVj , will have a non-zero rel-
ative drift in the wave-frame and the total time derivative
is d/dt=(Vj−Vph)·∇ in the wave frame. Previous stud-
ies of non-linear Alfv́en waves made in the wave-frame
(e.g.,Hasegawa and Mima, 1976; Kotsarenko et al., 1998;
Wu, 2003; Dubinin et al., 2005; Stasiewicz, 2005) have as-
sumed that the background plasma is at rest in the lab-frame
Vj=0 so thatd/dt=−Vph·∇. Studies of the stationary
Alfv én wave (StA) (e.g.,Knudsen, 1996; Finnegan et al.,
2008) however consider the wave to be stationary in the
lab-frameVph=0 and that the background plasma drift is
non-zeroVj 6=0 in the lab frame so thatd/dt=Vj ·∇. Al-
though both approaches describe solutions in the wave frame,
each approach (d/dt=(Vj−Vph)·∇ in the wave frame or
d/dt=Vj ·∇ in the lab frame) is associated with a different
phenomenon in that the first case involves a fluctuating, trav-
eling pattern and the second case involves a non-fluctuating,
non-traveling pattern. In contrast to the dispersive Alfvén
wave, the inclusion of the interaction between dc cross-field
plasma flow and an initial dc field-aligned current provides
a dc free energy source to support the non-fluctuating, non-
traveling StA pattern in the absence of a structured driver.
To summarize, whereas one approach is to choose either the
wave frame or the lab frame (in which a Doppler shift is in-
troduced), we treat the problem in a single frame of reference
(the lab frame) within which the wave phase velocity is zero.

Whereas the seminal paper for dispersive Alfvén waves is
Goertz and Boswell(1979), the seminal papers for station-
ary Alfvén waves areMallinckrodt and Carlson(1978) and
Maltsev et al.(1977). The term “stationary Alfv́en wave”
was introduced byMaltsev et al.(1977) to describe a sta-
tionary electromagnetic structure resulting from plasma con-
vection past a conducting strip. The application of the term
was broadened byMallinckrodt and Carlson(1978) to in-
clude structuring from a moving field source in a magnetized
plasma. The term “Alfv́en wing” is used to describe a sta-
tionary wave resulting from moving conductors, for exam-
ple in the case of Io orbiting within Jupiter’s magnetosphere
(Chust et al., 2005) or as a result of a conducting tether orbit-
ing with a spacecraft (Sallago and Platzeck, 2004). In these
cases, the structure of the stationary wave is imposed by the
source, althoughChust et al.(2005) argue that additional fil-
amentation can result. In contrast to previous descriptions of
Alfven wings, the nonlinear two-fluid model described here
and byKnudsen(1996) includes the effects of electron iner-
tia, leading to a self-consistent StA wave that restructures a
large-scale current sheet into a new electromagnetic equilib-
rium, and does not require a structured source. Also, as with
its time-varying counterpart – the dispersive Alfven wave –
the StA wave develops a significant parallel electric field as
a result of finite electron mass and plasma temperature.

In this paper, we are concerned with the limit
d/dt=(Vj )·∇. Knudsen (1996) predicted that in the

presence of background, perpendicular, plasma convection
through the wave fields, theVj ·∇ term alone generates
Alfv én-wave-like behavior, with electromagnetic structures
evolving in space as a result of the apparent time variation
seen by plasma particles convecting across static (electric
and magnetic) field structures. Within otherwise large-scale
sheets of parallel current, the StA wave imposes structure
both on plasma density and on parallel electron energy. The
inclusion of electron and ion temperature anisotropies in the
wave model is motivated by ionospheric observations (e.g.,
Oyama and Abe, 1987; Demars and Schunk, 1987) while
the inclusion of collisions (which tend to reduce temperature
anisotropy) is motivated by laboratory experiments, designed
for verifying the existence of the stationary inertial Alfvén
wave (StIA) (StA wave in the inertialβ<me/mi limit) which
are currently underway (Koepke et al., 2008). For complete-
ness in developing intuition, anisotropy and collisions are
evaluated separately and together.

2 Two-fluid equations

In this paper, we present a two-dimensional (Cartesian) wave
model describing uniform plasma flowVd , due to a convec-
tion electric fieldEy=VdB0, across a magnetic-field-aligned
current sheet (∂/∂y=0) within a warm, anisotropic, colli-
sional plasma. Solutions are sought for Alfvénic, station-
ary wave patterns having wave vectork oriented nearly per-
pendicular to a background magnetic field (ẑB0+ŷBy0), with
By0�B0. The equations are expressed appropriately for the
lab-stationary, wave-stationary frame of reference (∂/∂t=0,
Vf r=0). Wave equations describing an StA wave are derived
from the following set of anisotropic, time-independent, two-
fluid equations,(

Vj · ∇
)

Vj =
qj

mj

[
E +

(
Vj × B

)]
−

∇ · Pj

mjnj

+
Rj

mjnj

, (1)

∇ ·
(
nj Vj

)
= 0, (2)

∇ × B = µ0J. (3)

∇ × E = 0, (4)

∇ · B = 0. (5)

Here, j denotes particle species,qj is the particle charge,
Vj is the fluid velocity,nj is the particle density,Pj is the
anisotropic pressure tensor, andRj is the collisional resis-
tivity. The set of Eqs. (1–5) are closed through the quasi-
neutrality conditionne≈ni=n.

The electron fluid velocity is comprised of the initial elec-
tron drifts across the magnetic field and along the magnetic
field Ve0=x̂Vd+ẑVez0, and the wave modified velocityve

Ve = Ve0 + ve.
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Similarly, the ion fluid velocity is comprised of the initial
ion drift across the magnetic fieldVi0=x̂Vi×0 and the wave
modified velocityvi

Vi = Vi0 + vi .

The initial ion drift across the magnetic field is the sum
of the E×B drift Vd and an initial polarization driftVip0
i.e.Vi×0=Vd+Vip0. The initial polarization drift of the elec-
trons is neglected since it is a factor ofme/mi smaller than
that of the ions.

The electron and ion collisional resistivity terms are,

Ri = qeNη‖0J‖ + qeNη⊥0J⊥ − nmiνinVi, (6)

and

Re = −qeNη‖0J‖ − qeNη⊥0J⊥, (7)

whereη‖0 is the initial parallel resistivity,η⊥0 is the initial
perpendicular resistivity,N is the initial background plasma
density andνin is the ion-neutral collision frequency. The
velocity of neutrals is assumed to be negligible with respect
to the fluid velocity of the ions i.e.Vi−VN≈Vi . The parallel
and perpendicular resistivites result from Coulomb interac-
tions between the ions and electrons e.g.η‖0=(me/q

2
e N)νei‖

andη⊥0=(me/q
2
e N)νei⊥.

The anisotropic pressure tensor is given by

Pj = pj⊥I + (pj‖ − pj⊥)b̂b̂ = pj⊥(I − aj b̂b̂). (8)

Hereb̂ is the magnetic field-aligned unit vector,I is the unit
tensor andaj represents the pressure anisotropy. We assume
that the parallel and perpendicular pressures arepj‖=nTj‖

andpj⊥=nTj⊥ respectively (Tj is in energy units eV). In
this study we assume that both the parallel and perpendicular
temperatures are constant, and thus the pressure anisotropy
parameteraj is constant

aj ≡ 1 − Tj‖/Tj⊥. (9)

A graphical representation of the assumed Cartesian geome-
try, including vector directions of background magnetic field
B0 and initial particle drifts, for our two-dimensional StA
wave model is shown in Fig.1. The total magnetic field
is composed of an assumed uniform background magnetic
field in the z-directionB0, the magnetic field structure associ-
ated with the background current channelBy0 and the wave-
field δB (B=ŷ(By0+δBy)+ẑ(B0+δBz)). The y-component
of the wave-fieldδBy is not necessarily small compared to
the y-component of the background fieldBy0. However, the
y-component of the total fieldBy is assumed to be much
smaller than the z-component of the background fieldB0
i.e. By/B0�1, leading to the assumption that the angle be-
tween the magnetic field direction̂b and the z-axis is small
i.e. α�1. Only terms to first order inBy/B0 are retained.
Terms of orderδBz/B0 can be shown to be of orderB2

y/B2
0
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Fig. 1. Depiction of relevant vectors in the Cartesian geometry of
our stationary Alfvén wave model.

1996). The unit vector of the magnetic field-aligned direction
is

b̂ ≡ B
|B| ≈ ŷ

By

B0

+ ẑ + O

(

δBz

B0

)

+ O

(

B2
y

B2
0

)

. (10)

Solutions are sought for wave structures oriented at an
oblique angleθ to the x-axis (in the b-x plane). Thus the
differential operators∂/∂x and∂/∂z are related by,

∂

∂z
= − tan θ

∂

∂x
. (11)

2.1 Continuity relations

The electron and ion continuity Equations (2) are reduced to
one dimensional differential equations inx using (11), and
integrated over the interval[xo, x] yielding expressions for
the total particle densityn in terms of both the initial particle
densityN = n (x = x0) and the components of the particle
fluid velocities

n

N
=

1

ui − a
=

Ue

ue
. (12)

Normalized functions of the electron and ion fluid veloci-
ties have been defined asue ≡ 1 − (vez + Vez0) /Vphs and
ui ≡ 1 + vix/Vix0, respectively withVphs = Vd/ tan θ be-
ing the effective parallel wave phase speed. Also,Ue ≡
1 − Vez0/Vphs is the initial condition atx = x0 for the
function of electron velocity (ue (x = x0) = Ue). In this
study, we assume that the initial ion drift inx is dominated
by E × B motion, and thatviz ≪ VA. With these assump-
tions, the quantitya ≡ tan θviz/Vix0 can be neglected with
respect toui in (12). Particle densities are necessarily posi-
tive for physically meaningful solutions, thus only solutions
for which bothUe/ue > 0, andui > 0 are considered.

Fig. 1. Depiction of relevant vectors in the Cartesian geometry of
our stationary Alfv́en wave model.
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2.2 Parallel and perpendicular current density

The field-aligned current density is assumed to be carried by
the electrons and is given by

J‖ ≡ b̂ · J = J‖ ≈ qeneVez. (13)

Using Eq. (11), the parallel currentJ‖ is related to the per-
pendicular currentJ⊥≈Jx through the condition that the cur-
rent be divergence free, i.e.,∇·J=0,

Jx = −qeNVd

(
Vi×0

Vd

−
1

ui

)
. (14)

The perpendicular current results from the polarization drift
of ions through the spatially inhomogeneous transverse elec-
tric field.

2.3 Ion polarization drift

The stationary analog of the ion polarization drift is calcu-
lated from the ion momentum Eq. (1).(

42

ω2
ci

+ 1

)
Vix =

4

ωciB0

[
Ex −

Ti

qin

∂n

∂x
−

N

n
η⊥0Jx

]

+Vd −
By

B2
0

E‖ + ai

V 2
T i

V 2
A

Jx

qin

+
By

B0
(1 − 2ai)

Ti⊥

qiB0

1

n

∂n

∂z
. (15)

Here the differential operator 4 is defined as
4≡(Vi ·∇)+νin, ωci=qiB0/mi is the ion gyrofrequency, and
VT i=(Ti⊥/mi)

1/2 is the ion thermal speed. The definitions
of the functions of electron and ion fluid velocity, along with
Eq. (12) and the quasi-neutrality condition are used to solve
Eq. (15) for the perpendicular variation ofEx .

λe

∂Ēx

∂x
=

(
1 +

ν̄2
in

ω̄2
ci

)
−

pUe

ue

(
1 + ν̄inĒx

)
+ν̄in

[
2

ω̄2
cipUe

− βm⊥

(
τ

τ + 1

)
pUe

u2
e

]
λe

∂ue

∂x

+

[
1

ω̄2
cip

2U2
e

+ βm⊥

(
τ

τ + 1

)
1

u2
e

]
λ2

e

(
∂ue

∂x

)2

+

[
1

ω̄2
cip

2U2
e

− βm⊥

(
τ

τ + 1

)
1

u2
e

]
ueλ

2
e

∂2ue

∂x2
. (16)

Here, Ēx≡Ex/ (λeωciB0), ω̄ci≡ωci/ (Vd/λe),
ν̄in≡νin/ (Vd/λe), τ≡Ti⊥/Te⊥, and βm⊥≡β⊥ (mi/me)

whereβ⊥≡n(Te⊥+Ti⊥)/(B2
0/µ0). The factorp is the ion

polarization drift variable and is defined as

p ≡
(
1 + Vip0/Vd

)−1
= Vd/Vi×0. (17)

We see in Eq. (16) that the ion polarization drift, and hence
the ion polarization current, is unchanged by ion temperature
anisotropy to first order inBy/B0.

2.4 Parallel electric field

The parallel component of the electric field is modified by
the plasmaE×B flow,

E‖≡b̂ · E ≈ Ez + VdBy . (18)

This modification is of orderBy/B0 and is retained. For
nearly perpendicular, i.e.kx�kz, StA wave patterns, we as-
sume that the balancing of the parallel component of electric
field is governed primarily by the parallel electron dynamics.
Thus, the parallel component of the electric field is calcu-
lated from the parallel component of the electron momentum
equation.

E‖ =
me

qe

(Ve · ∇) Vez + (1 − ae)
Te⊥

qen

∂n

∂z
+

N

n
η‖0J‖. (19)

Equation (19) reduces to a one-dimensional partial differen-
tial equation inx using Eq. (11)

E‖ =
N

n
η‖0J‖ +

me tanθ

qe

(
Vphs− Vez

) ∂

∂x
Vez

−
me tanθ

qe

(1 − ae) V 2
T e(

Vphs− Vez

) ∂

∂x
Vez. (20)

Here,VT e=(Te⊥/me)
1/2 is the electron thermal speed. We

see in Eq. (20) that the parallel component of electric field, is
balanced by parallel resistivity (first term on the right hand
side), electron inertia (second term), and parallel electron
pressure (last term). The 180◦ phase difference between the
inertial and thermal pressure terms was first identified byGo-
ertz and Boswell(1979). Also, the portion of the parallel
electric field balanced by finite electron conductivity is out
of phase with the terms related to electron inertia and par-
allel electron thermal pressure. This phase difference plays
a fundamental role in the spatial decay and growth of StA
waves (Finnegan et al., 2008).

2.5 Wave equations

Differentiating Eq. (18) with respect tox and combining
Eqs. (3), (4), (10), (12), (13), (20), and the quasi-neutrality
condition, yields a second-order, nonlinear, differential equa-
tion for the functionue,

0 =
λ2

e

2

∂2u2
e

∂x2
−

V 2
A

V 2
phs

(1 − ae) βm⊥

(
1

τ + 1

)
λ2

e

∂2

∂x2
ln ue

+
V 2

A

V 2
phs

∂Ēx

∂x
+ ν̄ei‖λe

∂ue

∂x
+ Ue

(
1

ue

− 1

)
. (21)
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Here, ν̄ei‖=(λe/Vd)νei‖ is the normalized parallel electron
collision frequency and substitution of Eq. (16) into Eq. (21)
yields the wave equation for a resistive stationary Alfvén
wave,

0 =
λ2

e

2

∂2u2
e

∂x2
−

V 2
A

V 2
phs

(
1 −

ae

1 + τ

)
βm⊥λ2

e

∂2

∂x2
ln (ue)

+ν̄in

V 2
A

V 2
phs

[
2

ω̄2
cipUe

− βm⊥

(
τ

τ + 1

)
pUe

u2
e

]
λe

∂ue

∂x

+

V 2
A/V 2

phs

ω̄2
cip

2U2
e

λ2
e

2

∂2u2
e

∂x2
−

[
p

V 2
A

V 2
phs

(
1 + ν̄inĒx

)
− 1

]
Ue

ue

+ν̄ei‖λe

∂ue

∂x
−

[
Ue −

V 2
A

V 2
phs

(
1 +

ν̄2
in

ω̄2
ci

)]
. (22)

Equation (22) is coupled to Eq. (16) through the polariza-
tion field Ex and, together, they represent the closed set of
equations describing StA wave modification of field-aligned
electron drift. It is important to note that Eqs. (22) and (16)
contain the full ion and electron convective nonlinearities
(Vj ·∇) and are valid to first order in the magnetic perturba-
tionBy/B0. The time scale on which collisions and cyclotron
effects become important is identified through the normaliza-
tion of the collision and cyclotron frequencies, respectively.
In particular, these time-periods are normalized to the time
required for the bulk plasma to driftVd (E×B drift) the dis-
tance of one electron inertial length,λe/Vd . Hence, particle
collisions (cyclotron effects) become increasingly important
as the number of collisions (gyro-periods) a particle under-
goes as it transits across one perpendicular wave length of an
StA wave structure increases (decreases).

Figure2 shows numerical solutions to the coupled set of
Eqs. (22) and (16) for the parallel electron velocityVes/Ves0,
and plasma densityn/N for Vez0=−0.5VA andVphs=0.2 as
a function ofx/λe. The stationary inertial Alfv́en wave struc-
ture in Fig.2 is periodic with a wavelength ofλ0=5.31λe.
For the anti-parallel electron drift (APED) case shown, the
StIA wave accelerates electrons in the direction of their ini-
tial drift and depletes the background plasma density.Knud-
sen(1996) andFinnegan et al.(2008) characterize the gen-
eral properties of the StIA and the stationary kinetic Alfvén
(StKA) wave in more detail.

3 StA wave pattern formation

Spatial StA wave patterns are supported by either a back-
ground magnetic-field-aligned current carried by electrons
Jz0=qenVez0 or an initial perpendicular current carried by
the ionsp 6=1. To show that periodic StA wave patterns do
not form in the absence of both initial currents i.e.Vez0=0
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Fig. 2. Parallel electron velocityVes/Ves0, and plasma den-
sity n/N are plotted forVez0 = −0.5VA and Vphs = 0.2,
as a function ofx/λe. The StIA wave with initial anti-parallel
electron drift (APED) accelerates electrons in the direction of
their initial drift and depletes the background plasma density.
This StIA wave structure has a wavelength ofλ0 = 5.31λe.
(νin, νe‖, νe⊥, τ, ae, βm⊥ = 0, ωci → ∞)
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. (22)

Equation (22) is coupled to (16) through the polarization field
Ex and, together, they represent the closed set of equations
describing StA wave modification of field-aligned electron
drift. It is important to note that (22) and (16) contain the
full ion and electron convective nonlinearities(Vj · ∇) and
are valid to first order in the magnetic perturbationBy/B0.
The time scale on which collisions and cyclotron effects be-
come important is identified through the normalization of the
collision and cyclotron frequencies, respectively. In particu-
lar, these time-periods are normalized to the time required
for the bulk plasma to driftVd (E × B drift) the distance
of one electron inertial length,λe/Vd. Hence, particle col-
lisions (cyclotron effects) become increasingly important as
the number of collisions (gyro-periods) a particle undergoes
as it transits across one perpendicular wave length of an StA
wave structure increases (decreases).

Figure 2 shows numerical solutions to the coupled set of
Equations (22) and (16) for the parallel electron velocity
Ves/Ves0, and plasma densityn/N for Vez0 = −0.5VA and
Vphs = 0.2 as a function ofx/λe. The stationary inertial
Alfvén wave structure in Figure 2 is periodic with a wave-

length ofλ0 = 5.31λe. For the anti-parallel electron drift
(APED) case shown, the StIA wave accelerates electrons in
the direction of their initial drift and depletes the background
plasma density. Knudsen (1996) and Finnegan et al. (2008)
characterize the general properties of the StIA and the sta-
tionary kinetic Alfvén (StKA) wave in more detail.

3 StA wave pattern formation

Spatial StA wave patterns are supported by either a back-
ground magnetic-field-aligned current carried by electrons
Jz0 = qenVez0 or an initial perpendicular current carried by
the ionsp 6= 1. To show that periodic StA wave patterns do
not form in the absence of both initial currents i.e.Vez0 = 0
andp = 1 (see Figure 3), we write (22) in a generalized form
assuming thatνin = 0,

f(vez)
∂2vez

∂x2
+ g

(

vez ,
∂vez

∂x

)

∂vez

∂x
+ k2

x0vez = F. (23)

The driving term on the right hand side of (23) is

F = VA

(

1 − Vez0

Vd
tan θ

)[

Vez0

VA
+ (1 − p)

VA

Vd
tan θ

]

×
[

Λ2
eU

2
e − V 2

A

V 2
phs

ρ2
s

(

1 +
V 2

Ti

C2
S

)

]−1

, (24)

whereΛ2
e ≡ λ2

e

[

1 + (V 2
A/V 2

phs)(ω̄
2
cip

2U2
e )−1

]

and ρs =

CS/ωci is the acoustic gyroradius, withCS =
√

Te‖/mi

being the sound speed (e.g., Lysak and Lotko, 1996; Lysak
and Song, 2003). Here, we see that the driver is spatially and
temporally constant and depends on both the initial parallel
current in the form ofVez0 and initial perpendicular current
represented by the polarization parameterp. Forp = 1, i.e.
no initial perpendicular current, the StA wave is driven by
the initial parallel current. When the initial parallel current is
turned off i.e.Vez0 = 0 the driving term is zero and without
an initial perturbation, the StA wave pattern will not form.
Thus, in the absence of both an initial parallel current and
initial perpendicular current, i.e.,F=0, a spatial StA wave
pattern will not form..

In warm plasma (β 6= 0), the formation of periodic StA
wave patterns not only requires the initial currents discussed
above but also requires that the parallel electron velocity
Vez not pass through the effective wave phase speedVphs.
That is to say that the parallel electron velocity must sat-
isfy Vez < Vphs for Vez0 < Vphs and Vez > Vphs for
Vez0 > Vphs. WhenVez passes throughVphs, the electrons
are resonantly accelerated (e.g., Temerin et al., 1986; Klet-
zing, 1994) and the parallel component of the electric field
becomes singular, a condition for which periodic solutions
do not exist. To illustrate this we consider the collisionless
(η‖0=0) form of (20)

E‖ =
me

qe

[

(Vphs − Vez) −
(1 − ae) V 2

Te

(Vphs − Vez)

]

∂

∂z
Vez . (25)

Fig. 2. Parallel electron velocityVes/Ves0, and plasma densityn/N

are plotted forVez0=−0.5VA andVphs=0.2, as a function ofx/λe.
The StIA wave with initial anti-parallel electron drift (APED) accel-
erates electrons in the direction of their initial drift and depletes the
background plasma density. This StIA wave structure has a wave-
length ofλ0=5.31λe. (νin, νe‖, νe⊥, τ, ae, βm⊥=0, ωci→∞)

andp=1 (see Fig.3), we write Eq. (22) in a generalized form
assuming thatνin=0,

f (vez)
∂2vez

∂x2
+ g

(
vez,

∂vez

∂x

)
∂vez

∂x
+ k2

x0vez = F. (23)

The driving term on the right hand side of Eq. (23) is

F = VA

(
1 −

Vez0

Vd

tanθ

)[
Vez0

VA

+ (1 − p)
VA

Vd

tanθ

]

×

[
32

eU
2
e −

V 2
A

V 2
phs

ρ2
s

(
1 +

V 2
T i

C2
S

)]−1

, (24)

where 32
e≡λ2

e

[
1 + (V 2

A/V 2
phs)(ω̄

2
cip

2U2
e )−1

]
and

ρs=CS/ωci is the acoustic gyroradius, withCS=
√

Te‖/mi

being the sound speed (e.g.,Lysak and Lotko, 1996; Lysak
and Song, 2003). Here, we see that the driver is spatially
and temporally constant and depends on both the initial
parallel current in the form ofVez0 and initial perpendicular
current represented by the polarization parameterp. For
p=1, i.e. no initial perpendicular current, the StA wave is
driven by the initial parallel current. When the initial parallel
current is turned off i.e.Vez0=0 the driving term is zero and
without an initial perturbation, the StA wave pattern will not
form. Thus, in the absence of both an initial parallel current
and initial perpendicular current, i.e.,F=0, a spatial StA
wave pattern will not form.

In warm plasma (β 6=0), the formation of periodic StA
wave patterns not only requires the initial currents discussed
above but also requires that the parallel electron velocity
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Fig. 3. The maximum deviation from the initial value in electron
velocity (ves,max/Vphs) is plotted as a function of the initial elec-
tron drift Vez0 for Vphs = 0.2VA with βm⊥ = 0.2 andτ = 1 .
A region inVez0 parameter-space exists forβm⊥ 6= 0 in which the
StIA wave does not form. (νin, νe‖, νe⊥ = 0, andωci → ∞)

When the effects of the parallel electron thermal pressure bal-
ance the effects of the electron inertia for∂Vez/∂z 6= 0, the
parallel component of electric field changes direction.

0 = (Vphs − Vez) − (1 − ae)V 2
Te

(Vphs − Vez)
. (26)

This change in direction causes runaway acceleration of the
electrons untilVez = Vphs and the parallel electric field be-
comes singular. Solving (26) forVez , we obtain an expres-
sion for the amplitude limit for periodic StA wave patterns.

V −,+
ez

VA
=

Vphs

VA
∓
[

βm⊥(1 − ae)

1 + τ

]1/2

. (27)

When the electrons are accelerated toV −
ez/VA (for Vphs >

Vez0) or V +
ez/VA (for Vphs < Vez0), the parallel compo-

nent of the electric field changes direction and periodic wave
patterns do not form (see fig. 3). In fig. 3, numerical so-
lutions to (22) for the maximum deviation from the initial
value in electron velocity (ves,max/Vphs) is plotted as a func-
tion of the initial electron driftVez0 for Vphs = 0.2VA with
βm⊥ = 0.2 andτ = 1 (νin, νe‖, νe⊥ = 0, andωci → ∞).
The blue and red solid lines in fig. (3) arevez,max − v−ez

andvez,max − v+
ez , respectively. AsVez0 approachesVphs

from the left,vez,max → v−ez and periodic wave patterns do
not form (solid black line,ae = 0). Similarly, asVez0 ap-
proachesVphs from the right,vez,max → v+

ez and likewise
periodic wave patterns do not form. When the parallel elec-
tron pressure is zero i.e.ae = 1 (solution shown with circles
in fig. 3), Vez 6= Vphs everywhere inVez0 parameter-space
exceptVphs = Vez0, where the wave amplitude is also zero.
The dashed line in fig. 3 representsvez,max − (Vphs − Vez0)

and is zero only atVphs = Vez0. The width of the region in
Vez0 parameter-space (Vez = Vez0 + vez) where no periodic
solutions exist is obtained from (27).

∆Vez0 = (v−ez,max − v+
ez,max) + 2

[

βm⊥(1 − ae)

1 + τ

]1/2

.(28)

For βm⊥ = 0 or ae = 1 (e.g. Te⊥ >> Te‖), (v−ez,max −
v+

ez,max) = 0 and thus∆Vez0 = 0 and periodic solutions
exist everywhere in the region aroundVphs − Vez0 = 0.

3.1 Linear limit

To illustrate the connection between our model and previous
work of others, we compare limiting cases of our model with
related models of the time-varying, shear-mode, dispersive
Alfvén wave. In the linear, or small amplitude (|vez/Vphs| ≪
1), limit, retaining electron collisions, (22) reduces to

∂2

∂x2
vez + 2γ

∂

∂x
vez + k2

x0vez = F. (29)

The damping termγ and the characteristic wave numberk2
x0

are

γ =
λe

2

νe‖

(Vd/λe)

[

Λ2
e −

V 2
A

V 2
phs

ρ2
s

(

1 +
V 2

Ti

C2
S

)

]−1

, (30)

and

k2
x0 =

(

p
V 2

A

V 2
phs

− 1

)[

Λ2
eU

2
e − V 2

A

V 2
phs

ρ2
s

(

1 +
V 2

Ti

C2
S

)

]−1

.(31)

Equation (29) describes the response of a linear oscillator
to a step-function driver (e.g., Marion and Thornton, 1995),
where the forcing functionF is given by

F = Ue

[

Vez0 +
V 2

A

Vphs
(1 − p)

]

×
[

Λ2
eU

2
e − V 2

A

V 2
phs

ρ2
s

(

1 +
V 2

Ti

C2
S

)

]−1

. (32)

Here again we see that the driving termF is a function of the
initial currents, and is spatially homogeneous hence unstruc-
tured. In the absence of both initial currents i.e.p = 1 and
Vez0 = 0 henceUe = 1, the amplitude of the driving term is
zeroF = 0 and (29) is homogeneous.

Fourier transforming (29) and substituting the relation
tan θ= − kz/kx from the Fourier transform of (11), for the
case of strongly magnetized plasmaωci → ∞ i.e. Λ2

e = λ2
e

and no initial currents i.e.F = 0, (29) yields

−kxVd

kz
= VA

[

1 + ρ2
sk

2
x

(

1 +
V 2

T i

C2

S

)]1/2

[

1 + λ2
ek

2
x

(

1 − iνei‖/kxVd

)]1/2
. (33)

For the inertial Alfvén wave in collisionless (νe = 0),
isotropic (ae = 0) plasma, (33) reduces to the zero-frequency

Fig. 3. The maximum deviation from the initial value in electron
velocity (ves,max/Vphs) is plotted as a function of the initial electron
drift Vez0 for Vphs=0.2VA with βm⊥=0.2 andτ=1 . A region in
Vez0 parameter-space exists forβm⊥ 6= 0 in which the StIA wave
does not form. (νin, νe‖, νe⊥ = 0, andωci→∞)

Vez not pass through the effective wave phase speedVphs.
That is to say that the parallel electron velocity must sat-
isfy Vez<Vphs for Vez0<Vphs andVez>Vphs for Vez0>Vphs.
WhenVez passes throughVphs, the electrons are resonantly
accelerated (e.g.,Temerin et al., 1986; Kletzing, 1994) and
the parallel component of the electric field becomes singu-
lar, a condition for which periodic solutions do not exist. To
illustrate this we consider the collisionless (η‖0=0) form of
Eq. (20)

E‖ =
me

qe

[(
Vphs− Vez

)
−

(1 − ae) V 2
T e(

Vphs− Vez

)] ∂

∂z
Vez. (25)

When the effects of the parallel electron thermal pressure bal-
ance the effects of the electron inertia for∂Vez/∂z 6= 0, the
parallel component of electric field changes direction.

0 =
(
Vphs− Vez

)
−

(1 − ae) V 2
T e(

Vphs− Vez

) . (26)

This change in direction causes runaway acceleration of the
electrons untilVez=Vphs and the parallel electric field be-
comes singular. Solving Eq. (26) for Vez, we obtain an ex-
pression for the amplitude limit for periodic StA wave pat-
terns.

V
−,+
ez

VA

=
Vphs

VA

∓

[
βm⊥(1 − ae)

1 + τ

]1/2

. (27)

When the electrons are accelerated toV −
ez/VA (for

Vphs>Vez0) or V +
ez/VA (for Vphs<Vez0), the parallel com-

ponent of the electric field changes direction and periodic

wave patterns do not form (see Fig.3). In Fig. 3, numeri-
cal solutions to Eq. (22) for the maximum deviation from the
initial value in electron velocity (ves,max/Vphs) is plotted as
a function of the initial electron driftVez0 for Vphs=0.2VA

with βm⊥=0.2 and τ=1 (νin, νe‖, νe⊥=0, and ωci→∞).
The blue and red solid lines in Fig. (3) are vez,max−v−

ez

and vez,max−v+
ez, respectively. AsVez0 approachesVphs

from the left, vez,max→v−
ez and periodic wave patterns do

not form (solid black line,ae=0). Similarly, asVez0 ap-
proachesVphs from the right,vez,max→v+

ez and likewise pe-
riodic wave patterns do not form. When the parallel elec-
tron pressure is zero i.e.ae=1 (solution shown with circles
in Fig. 3), Vez 6=Vphs everywhere inVez0 parameter-space
exceptVphs=Vez0, where the wave amplitude is also zero.
The dashed line in Fig.3 representsvez,max−(Vphs−Vez0)

and is zero only atVphs=Vez0. The width of the region in
Vez0 parameter-space (Vez=Vez0+vez) where no periodic so-
lutions exist is obtained from Eq. (27).

1Vez0 = (v−
ez,max − v+

ez,max) + 2

[
βm⊥(1 − ae)

1 + τ

]1/2

. (28)

For βm⊥=0 or ae=1 (e.g.Te⊥�Te‖), (v−
ez,max−v+

ez,max)=0
and thus1Vez0=0 and periodic solutions exist everywhere
in the region aroundVphs−Vez0=0.

3.1 Linear limit

To illustrate the connection between our model and pre-
vious work of others, we compare limiting cases of our
model with related models of the time-varying, shear-mode,
dispersive Alfv́en wave. In the linear, or small amplitude
(|vez/Vphs|�1), limit, retaining electron collisions, Eq. (22)
reduces to

∂2

∂x2
vez + 2γ

∂

∂x
vez + k2

x0vez = F. (29)

The damping termγ and the characteristic wave numberk2
x0

are

γ =
λe

2

νe‖

(Vd/λe)

[
32

e −
V 2

A

V 2
phs

ρ2
s

(
1 +

V 2
T i

C2
S

)]−1

, (30)

and

k2
x0 =

(
p

V 2
A

V 2
phs

− 1

)[
32

eU
2
e −

V 2
A

V 2
phs

ρ2
s

(
1 +

V 2
T i

C2
S

)]−1

.(31)

Equation (29) describes the response of a linear oscillator
to a step-function driver (e.g.,Marion and Thornton, 1995),
where the forcing functionF is given by
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F = Ue

[
Vez0 +

V 2
A

Vphs
(1 − p)

]
×

[
32

eU
2
e −

V 2
A

V 2
phs

ρ2
s

(
1 +

V 2
T i

C2
S

)]−1

. (32)

Here again we see that the driving termF is a function of
the initial currents, and is spatially homogeneous hence un-
structured. In the absence of both initial currents i.e.p=1
andVez0=0 henceUe=1, the amplitude of the driving term
is zeroF=0 and Eq. (29) is homogeneous.

Fourier transforming Eq. (29) and substituting the relation
tanθ=−kz/kx from the Fourier transform of Eq. (11), for the
case of strongly magnetized plasmaωci→∞ i.e.32

e=λ2
e and

no initial currents i.e.F=0, Eq. (29) yields

−
kxVd

kz

= VA

[
1 + ρ2

s k2
x

(
1 +

V 2
T i

C2
S

)]1/2

[
1 + λ2

ek
2
x

(
1 − iνei‖/kxVd

)]1/2
. (33)

For the inertial Alfv́en wave in collisionless (νe=0), isotropic
(ae=0) plasma, Eq. (33) reduces to the zero-frequency limit
of Eq. (5) in Drozdenko and Morales(2001), describing the
linear effects of cross-field plasma flow on a field-aligned
current channel. Neglecting electron collisions and recogniz-
ing thatω=−kxVd is the effective wave frequency, Eq. (33)
reduces to the dispersion relation for the low-frequency dis-
persive Alfv́en wave including finite Larmor radius effects
(Stasiewicz et al., 2000). Settingλe=0, andρs=0, we see
that the parallel wave phase speed is simply the Alfvén speed
(Alfv én, 1942), i.e.,Vphs=VA.

4 Discussion

Wave reflection at a conducting boundary is one poten-
tially important effect in both the auroral ionosphere and
a laboratory-experiment that remains unaddressed by the
present model. Wave reflection of nonlinear StA waves can-
not automatically be assumed to involve simple superposi-
tion, but it might. There is no obvious reason to expect that
the interference produced by a reflected StA wave would in-
hibit the electron acceleration and plasma density variation
induced by the wave, particularly since, in the linear limit,
the parallel electric field associated with the inertial Alfvén
wave may constructively interfere upon reflection from a
conducting boundary such as the ionosphere (Goertz and
Boswell, 1979).

The present StA wave model does not include background
parallel and perpendicular inhomogeneities. The strong in-
homogeneities present in the auroral ionosphere may make
the establishment of a StA wave pattern at a fixed angle to
the background magnetic field doubtful. Of particular im-
portance is the functional dependence of the electron and

ion collision frequencies with altitude. Inhomogeneities in
the collision frequencies would have to be addressed before
making any direct applications of the collisional StA wave
to the auroral zone. Predicting the details of interference
and reflection as well as parallel and perpendicular inho-
mogeneities may be accomplished more accurately via com-
puter simulation.

Along auroral magnetic-field-lines, thermal effects be-
come increasingly significant at altitudes above 2 RE (RE

is Earth radius). For stationary inertial Alfvén waves with
warm plasma corrections (non-zero parallel electron thermal
pressure), the parallel component of electric field becomes
singular only when the initial electron drift is parallel to
(PED solutions) and equal to the parallel wave phase veloc-
ity in the convecting plasma rest frame i.e.,Vez=Vphs. For
initial electron drifts anti-parallel to the parallel wave phase
velocity (APED solutions), the parallel component of electric
field is nonsingular for all values of initial electron drift and
the resulting resonant acceleration discussed both here and
by Kletzing (1994) is unchanged. Thus, the altitude range
of periodic StA wave structures in the auroral ionosphere
may be limited for initial electron drifts which are parallel
to the effective parallel wave phase velocity, as perceived in
the convecting plasma rest frame.

5 Conclusions

In this paper, a two-fluid model describing a collisional sta-
tionary Alfvén wave in anisotropic plasma is presented. A
bounded range of values of parallel electron drift velocity
is found that excludes periodic stationary Alfvén wave solu-
tions. This exclusion region depends on parametersVA, βm⊥

and electron temperature anisotropy.
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