694 research outputs found
Measurement of Turbulence in Superfluid 3He-B
The experimental investigation of superfluid turbulence in 3He-B is generally
not possible with the techniques which have been developed for 4He-II. We
describe a new method by which a transient burst of turbulent vortex expansion
can be generated in 3He-B. It is based on the injection of a few vortex loops
into rotating vortex-free flow. The time-dependent evolution of the quantized
vorticity is then monitored with NMR spectroscopy. Using these techniques the
transition between regular (i.e. vortex number conserving) and turbulent vortex
dynamics can be recorded at T ~ 0.6 Tc and a number of other characteristics of
turbulence can be followed down to a temperature of T ~ 0.4 Tc.Comment: 31 pages, 10 figure
Onset of turbulence in superfluid 3He-B and its dependence on vortex injection in applied flow
Vortex dynamics in 3He-B is divided by the temperature dependent damping into
a high-temperature regime, where the number of vortices is conserved, and a
low-temperature regime, where rapid vortex multiplication takes place in a
turbulent burst. We investigate experimentally the hydrodynamic transition
between these two regimes by injecting seed vortex loops into vortex-free
rotating flow. The onset temperature of turbulence is dominated by the roughly
exponential temperature dependence of vortex friction, but its exact value is
found to depend on the injection method.Comment: To be published in the proceedings of the 24th International
Conference on Low Temperature Physics - LT24, in Conference Proceedings of
the American Institute of Physic
The health and well-being of older adults with dual sensory impairment (DSI) in four countries
Objectives
Dual sensory impairment (DSI) is a combination of vision and hearing impairments that represents a unique disability affecting all aspects of a person’s life. The rates of DSI are expected to increase due to population aging, yet little is known about DSI among older adults (65+). The prevalence of DSI and client characteristics were examined among two groups, namely, older adults receiving home care services or those residing in a long-term care (LTC) facility in four countries (Canada, US, Finland, Belgium). Methods
Existing data, using an interRAI assessment, were analyzed to compare older adults with DSI to all others across demographic characteristics, functional and psychosocial outcomes. Results
In home care, the prevalence of DSI across the four countries ranged from 13.4% to 24.6%; in LTC facilities, it ranged from 9.7% to 33.9%. Clients with DSI were more likely to be 85+, have moderate/severe cognitive impairment, impairments in activities of daily living, and have communication difficulties. Among residents of LTC facilities, individuals with DSI were more likely to be 85+ and more likely have a diagnosis of Alzheimer’s disease. Having DSI increased the likelihood of depression in both care settings, but after adjusting for other factors, it remained significant only in the home care sample. Conclusions
While the prevalence of DSI cross nationally is similar to that of other illnesses such as diabetes, depression, and Alzheimer’s disease, we have a limited understanding of its affects among older adults. Raising awareness of this unique disability is imperative to insure that individuals receive the necessary rehabilitation and supportive services to improve their level of independence and quality of life
Vortex Multiplication in Applied Flow: the Precursor to Superfluid Turbulence
The dynamics of quantized vortices in rotating He-B is investigated in
the low density (single-vortex) regime as a function of temperature. An abrupt
transition is observed at . Above this temperature the number of
vortex lines remains constant, as they evolve to their equilibrium positions.
Below this temperature the number of vortices increases linearly in time until
the vortex density has grown sufficiently for turbulence to switch on. On the
basis of numerical calculations we suggest a mechanism responsible for vortex
formation at low temperatures and identify the mutual friction parameter which
governs its abrupt temperature dependence.Comment: 5 pages, 4 figures; version submitted to Phys. Rev. Let
Classical and quantum regimes of the superfluid turbulence
We argue that turbulence in superfluids is governed by two dimensionless
parameters. One of them is the intrinsic parameter q which characterizes the
friction forces acting on a vortex moving with respect to the heat bath, with
1/q playing the same role as the Reynolds number Re=UR/\nu in classical
hydrodynamics. It marks the transition between the "laminar" and turbulent
regimes of vortex dynamics. The developed turbulence described by Kolmogorov
cascade occurs when Re >> 1 in classical hydrodynamics, and q << 1 in the
superfluid hydrodynamics. Another parameter of the superfluid turbulence is the
superfluid Reynolds number Re_s=UR/\kappa, which contains the circulation
quantum \kappa characterizing quantized vorticity in superfluids. This
parameter may regulate the crossover or transition between two classes of
superfluid turbulence: (i) the classical regime of Kolmogorov cascade where
vortices are locally polarized and the quantization of vorticity is not
important; and (ii) the quantum Vinen turbulence whose properties are
determined by the quantization of vorticity. The phase diagram of the dynamical
vortex states is suggested.Comment: 12 pages, 1 figure, version accepted in JETP Letter
Structure of surface vortex sheet between two rotating 3He superfluids
We study a two-phase sample of superfluid 3He where vorticity exists in one
phase (3He-A) but cannot penetrate across the interfacial boundary to a second
coherent phase (3He-B). We calculate the bending of the vorticity into a
surface vortex sheet on the interface and solve the internal structure of this
new type of vortex sheet. The compression of the vorticity from three to two
dimensions enforces a structure which is made up of half-quantum units,
independently of the structure of the source vorticity in the bulk. These
results are consistent with our NMR measurements.Comment: 4 pages, 4 figure
Superconducting Nb-film LC resonator
Sputtered Nb thin-film LC resonators for low frequencies at 0.5 MHz have been
fabricated and tested in the temperature range 0.05--1 K in magnetic fields up
to 30 mT. Their Q value increases towards decreasing temperature as sqrt(T) and
reaches 10^3 at 0.05 K. As a function of magnetic field Q is unstable and
displays variations up to 50%, which are reproducible from one field sweep to
the next. These instabilities are attributed to dielectric losses in the plasma
deposited SiO_2 insulation layer, since the thin-film coil alone reaches a Q >
10^5 at 0.05 K.Comment: 6 pages, 7 figures, submitted to Review of Scientific Instrument
- …