10,029 research outputs found

    A program to evaluate a control system based on feedback of aerodynamic pressure differentials, part 1

    Get PDF
    The use of pressure differentials in a flight control system was evaluated. The pressure profile around the test surface was determined using two techniques: (1) windtunnel data (actual); and (2) NASA/Langley Single Element Airfoil Computer Program (theoretical). The system designed to evaluate the concept of using pressure differentials is composed of a sensor drive and power amplifiers, actuator, position potentiometer, and a control surface. The characteristics (both desired and actual) of the system and each individual component were analyzed. The desired characteristics of the system as a whole are given. The flight control system developed, the testing procedures and data reduction methods used, and theoretical frequency response analysis are described

    Directional approach to spatial structure of solutions to the Navier-Stokes equations in the plane

    Full text link
    We investigate a steady flow of incompressible fluid in the plane. The motion is governed by the Navier-Stokes equations with prescribed velocity uu_\infty at infinity. The main result shows the existence of unique solutions for arbitrary force, provided sufficient largeness of uu_\infty. Furthermore a spacial structure of the solution is obtained in comparison with the Oseen flow. A key element of our new approach is based on a setting which treats the directino of the flow as \emph{time} direction. The analysis is done in framework of the Fourier transform taken in one (perpendicular) direction and a special choice of function spaces which take into account the inhomogeneous character of the symbol of the Oseen system. From that point of view our technique can be used as an effective tool in examining spatial asymptotics of solutions to other systems modeled by elliptic equations

    Methodology for environmental assessment of agri-environment schemes: the Agri Environmental Footprint Index

    Get PDF
    End of project reportAgri-environment schemes pay farmers for the provision of environmental services. Such schemes tend to have multiple measures that deliver multiple environmental objectives, and there is a lack of consistent methodology with which to measure the environmental benefits of such schemes. Funded by EU FP6, the Agri-Environment Footprint project (www.footprint.rdg.ac.uk) aimed to address this challenge, and this report provides results from selected components of the project.European Unio

    Aperture synthesis for gravitational-wave data analysis: Deterministic Sources

    Get PDF
    Gravitational wave detectors now under construction are sensitive to the phase of the incident gravitational waves. Correspondingly, the signals from the different detectors can be combined, in the analysis, to simulate a single detector of greater amplitude and directional sensitivity: in short, aperture synthesis. Here we consider the problem of aperture synthesis in the special case of a search for a source whose waveform is known in detail: \textit{e.g.,} compact binary inspiral. We derive the likelihood function for joint output of several detectors as a function of the parameters that describe the signal and find the optimal matched filter for the detection of the known signal. Our results allow for the presence of noise that is correlated between the several detectors. While their derivation is specialized to the case of Gaussian noise we show that the results obtained are, in fact, appropriate in a well-defined, information-theoretic sense even when the noise is non-Gaussian in character. The analysis described here stands in distinction to ``coincidence analyses'', wherein the data from each of several detectors is studied in isolation to produce a list of candidate events, which are then compared to search for coincidences that might indicate common origin in a gravitational wave signal. We compare these two analyses --- optimal filtering and coincidence --- in a series of numerical examples, showing that the optimal filtering analysis always yields a greater detection efficiency for given false alarm rate, even when the detector noise is strongly non-Gaussian.Comment: 39 pages, 4 figures, submitted to Phys. Rev.

    Modeling Maxwell's demon with a microcanonical Szilard engine

    Full text link
    Following recent work by Marathe and Parrondo [PRL, 104, 245704 (2010)], we construct a classical Hamiltonian system whose energy is reduced during the adiabatic cycling of external parameters, when initial conditions are sampled microcanonically. Combining our system with a device that measures its energy, we propose a cyclic procedure during which energy is extracted from a heat bath and converted to work, in apparent violation of the second law of thermodynamics. This paradox is resolved by deriving an explicit relationship between the average work delivered during one cycle of operation, and the average information gained when measuring the system's energy

    Wetting and Minimal Surfaces

    Get PDF
    We study minimal surfaces which arise in wetting and capillarity phenomena. Using conformal coordinates, we reduce the problem to a set of coupled boundary equations for the contact line of the fluid surface, and then derive simple diagrammatic rules to calculate the non-linear corrections to the Joanny-de Gennes energy. We argue that perturbation theory is quasi-local, i.e. that all geometric length scales of the fluid container decouple from the short-wavelength deformations of the contact line. This is illustrated by a calculation of the linearized interaction between contact lines on two opposite parallel walls. We present a simple algorithm to compute the minimal surface and its energy based on these ideas. We also point out the intriguing singularities that arise in the Legendre transformation from the pure Dirichlet to the mixed Dirichlet-Neumann problem.Comment: 22 page

    Binary inspiral, gravitational radiation, and cosmology

    Get PDF
    Observations of binary inspiral in a single interferometric gravitational wave detector can be cataloged according to signal-to-noise ratio ρ\rho and chirp mass M\cal M. The distribution of events in a catalog composed of observations with ρ\rho greater than a threshold ρ0\rho_0 depends on the Hubble expansion, deceleration parameter, and cosmological constant, as well as the distribution of component masses in binary systems and evolutionary effects. In this paper I find general expressions, valid in any homogeneous and isotropic cosmological model, for the distribution with ρ\rho and M\cal M of cataloged events; I also evaluate these distributions explicitly for relevant matter-dominated Friedmann-Robertson-Walker models and simple models of the neutron star mass distribution. In matter dominated Friedmann-Robertson-Walker cosmological models advanced LIGO detectors will observe binary neutron star inspiral events with ρ>8\rho>8 from distances not exceeding approximately 2Gpc2\,\text{Gpc}, corresponding to redshifts of 0.480.48 (0.26) for h=0.8h=0.8 (0.50.5), at an estimated rate of 1 per week. As the binary system mass increases so does the distance it can be seen, up to a limit: in a matter dominated Einstein-deSitter cosmological model with h=0.8h=0.8 (0.50.5) that limit is approximately z=2.7z=2.7 (1.7) for binaries consisting of two 10M10\,\text{M}_\odot black holes. Cosmological tests based on catalogs of the kind discussed here depend on the distribution of cataloged events with ρ\rho and M\cal M. The distributions found here will play a pivotal role in testing cosmological models against our own universe and in constructing templates for the detection of cosmological inspiraling binary neutron stars and black holes.Comment: REVTeX, 38 pages, 9 (encapsulated) postscript figures, uses epsf.st

    On the crosscorrelation between Gravitational Wave Detectors for detecting association with Gamma Ray Bursts

    Get PDF
    Crosscorrelation of the outputs of two Gravitational Wave (GW) detectors has recently been proposed [1] as a method for detecting statistical association between GWs and Gamma Ray Bursts (GRBs). Unfortunately, the method can be effectively used only in the case of stationary noise. In this work a different crosscorrelation algorithm is presented, which may effectively be applied also in non-stationary conditions for the cumulative analysis of a large number of GRBs. The value of the crosscorrelation at zero delay, which is the only one expected to be correlated to any astrophysical signal, is compared with the distribution of crosscorrelation of the same data for all non-zero delays within the integration time interval. This background distribution is gaussian, so the statistical significance of an experimentally observed excess would be well-defined. Computer simulations using real noise data of the cryogenic GW detectors Explorer and Nautilus with superimposed delta-like signals were performed, to test the effectiveness of the method, and theoretical estimates of its sensitivity compared to the results of the simulation. The effectiveness of the proposed algorithm is compared to that of other cumulative techniques, finding that the algorithm is particularly effective in the case of non-gaussian noise and of a large (100-1000s) and unpredictable delay between GWs and GRBs.Comment: 7 pages, 4 figures, 1 table. Submitted by Phys. Rev.
    corecore