12,544 research outputs found

    Poems

    Get PDF

    An Extremely Massive Dry Galaxy Merger in a Moderate Redshift Cluster

    Full text link
    We have identified perhaps the largest major galaxy merger ever seen. While analysing Spitzer IRAC images of CL0958+4702, an X-ray selected cluster at z=0.39, we discovered an unusual plume of stars extending \gtrsim110 kpc outward from the bright central galaxy (BCG). Three galaxies 1-1.5 mag fainter than the BCG lie within 17 kpc (projected) of the BCG and are probably participating in the merger. The plume is detected in all four IRAC channels and at optical wavelengths in images from the WIYN telescope; the surface brightness is remarkably high (μr\mu_r\approx24.8 mag arcsec2^{-2} at 50 kpc). The optical and infrared colors are consistent with those of other BCGs, suggesting that the plume is composed of old stars and negligible recent star formation (hence a "dry merger"). The luminosity in the plume is at least equivalent to a 4L^* galaxy. A diffuse halo extending 110 kpc from the BCG in one IRAC image suggests the total amount of diffuse light is L_r\sim 1.3x10^{11}h^{-2} L_sun. A Chandra observation shows an X-ray image and spectrum typical of moderate-mass clusters. We use MMT/Hectospec to measure 905 redshifts in a 1 deg^2 region around the cluster. The velocities of two of the BCG companions indicate a merger timescale for the companion galaxies of \sim110 Myr and \sim0.5-1 Gyr for the plume. We conclude that the BCG and intracluster light of CL0958 is formed by major mergers at moderate redshifts. After the major merger is complete, CL0958 will likely become a fossil cluster.Comment: 5 pages, 2 figures, to appear in ApJ

    The generation of a Gaussian random process in a position parameter

    Get PDF
    Analog computer method for approximating stationary Gaussian random process depending only on position paramete

    Molecular mechanisms of transcription initiation—structure, function, and evolution of TFE/TFIIE-like factors and open complex formation

    Get PDF
    Transcription initiation requires that the promoter DNA is melted and the template strand is loaded into the active site of the RNA polymerase (RNAP), forming the open complex (OC). The archaeal initiation factor TFE and its eukaryotic counterpart TFIIE facilitate this process. Recent structural and biophysical studies have revealed the position of TFE/TFIIE within the pre-initiation complex (PIC) and illuminated its role in OC formation. TFE operates via allosteric and direct mechanisms. Firstly, it interacts with the RNAP and induces the opening of the flexible RNAP clamp domain, concomitant with DNA melting and template loading. Secondly, TFE binds physically to single-stranded DNA in the transcription bubble of the OC and increases its stability. The identification of the β-subunit of archaeal TFE enabled us to reconstruct the evolutionary history of TFE/TFIIE-like factors, which is characterised by winged helix (WH) domain expansion in eukaryotes and loss of metal centres including iron-sulfur clusters and Zinc ribbons. OC formation is an important target for the regulation of transcription in all domains of life. We propose that TFE and the bacterial general transcription factor CarD, although structurally and evolutionary unrelated, show interesting parallels in their mechanism to enhance OC formation. We argue that OC formation is used as a way to regulate transcription in all domains of life, and these regulatory mechanisms coevolved with the basal transcription machinery

    Binary inspiral, gravitational radiation, and cosmology

    Get PDF
    Observations of binary inspiral in a single interferometric gravitational wave detector can be cataloged according to signal-to-noise ratio ρ\rho and chirp mass M\cal M. The distribution of events in a catalog composed of observations with ρ\rho greater than a threshold ρ0\rho_0 depends on the Hubble expansion, deceleration parameter, and cosmological constant, as well as the distribution of component masses in binary systems and evolutionary effects. In this paper I find general expressions, valid in any homogeneous and isotropic cosmological model, for the distribution with ρ\rho and M\cal M of cataloged events; I also evaluate these distributions explicitly for relevant matter-dominated Friedmann-Robertson-Walker models and simple models of the neutron star mass distribution. In matter dominated Friedmann-Robertson-Walker cosmological models advanced LIGO detectors will observe binary neutron star inspiral events with ρ>8\rho>8 from distances not exceeding approximately 2Gpc2\,\text{Gpc}, corresponding to redshifts of 0.480.48 (0.26) for h=0.8h=0.8 (0.50.5), at an estimated rate of 1 per week. As the binary system mass increases so does the distance it can be seen, up to a limit: in a matter dominated Einstein-deSitter cosmological model with h=0.8h=0.8 (0.50.5) that limit is approximately z=2.7z=2.7 (1.7) for binaries consisting of two 10M10\,\text{M}_\odot black holes. Cosmological tests based on catalogs of the kind discussed here depend on the distribution of cataloged events with ρ\rho and M\cal M. The distributions found here will play a pivotal role in testing cosmological models against our own universe and in constructing templates for the detection of cosmological inspiraling binary neutron stars and black holes.Comment: REVTeX, 38 pages, 9 (encapsulated) postscript figures, uses epsf.st

    Rotochemical Heating of Neutron Stars: Rigorous Formalism with Electrostatic Potential Perturbations

    Get PDF
    The electrostatic potential that keeps approximate charge neutrality in neutron star matter is self-consistently introduced into the formalism for rotochemical heating presented in a previous paper by Fernandez and Reisenegger. Although the new formalism is more rigorous, we show that its observable consequences are indistinguishable from those of the previous one, leaving the conclusions of the previous paper unchanged.Comment: 14 pages, including 4 eps figures. Accepted for publication in The Astrophysical Journa

    Poems

    Get PDF

    Dissociation of CH4 by electron impact: Production of metastable hydrogen and carbon fragments

    Get PDF
    Metastable fragments produced by electron impact excitation of CH4 have been investigated for incident electron energies from threshold to 300 eV. Only metastable hydrogen and carbon atoms were observed. Onset energies for the production of metastable hydrogen atoms were observed at electron impact energies of 22.0 + or - .5 eV, 25.5 + or - .6 eV, 36.7 + or - .6 eV and 66 + or - 3 eV, and at 26.6 + or - .6 eV for the production of metastable carbon atoms. Most of the fragments appear to have been formed in high-lying Rydberg states. The total metastable hydrogen cross section reaches a maximum value of approximately 1 X 10 to the minus 18th power sq cm at 100 eV. At the same energy, the metastable carbon cross section is 2 x 10 to the minus 19th power sq cm
    corecore