8,788 research outputs found

    Binary inspiral, gravitational radiation, and cosmology

    Get PDF
    Observations of binary inspiral in a single interferometric gravitational wave detector can be cataloged according to signal-to-noise ratio ρ\rho and chirp mass M\cal M. The distribution of events in a catalog composed of observations with ρ\rho greater than a threshold ρ0\rho_0 depends on the Hubble expansion, deceleration parameter, and cosmological constant, as well as the distribution of component masses in binary systems and evolutionary effects. In this paper I find general expressions, valid in any homogeneous and isotropic cosmological model, for the distribution with ρ\rho and M\cal M of cataloged events; I also evaluate these distributions explicitly for relevant matter-dominated Friedmann-Robertson-Walker models and simple models of the neutron star mass distribution. In matter dominated Friedmann-Robertson-Walker cosmological models advanced LIGO detectors will observe binary neutron star inspiral events with ρ>8\rho>8 from distances not exceeding approximately 2Gpc2\,\text{Gpc}, corresponding to redshifts of 0.480.48 (0.26) for h=0.8h=0.8 (0.50.5), at an estimated rate of 1 per week. As the binary system mass increases so does the distance it can be seen, up to a limit: in a matter dominated Einstein-deSitter cosmological model with h=0.8h=0.8 (0.50.5) that limit is approximately z=2.7z=2.7 (1.7) for binaries consisting of two 10M10\,\text{M}_\odot black holes. Cosmological tests based on catalogs of the kind discussed here depend on the distribution of cataloged events with ρ\rho and M\cal M. The distributions found here will play a pivotal role in testing cosmological models against our own universe and in constructing templates for the detection of cosmological inspiraling binary neutron stars and black holes.Comment: REVTeX, 38 pages, 9 (encapsulated) postscript figures, uses epsf.st

    Modeling Maxwell's demon with a microcanonical Szilard engine

    Full text link
    Following recent work by Marathe and Parrondo [PRL, 104, 245704 (2010)], we construct a classical Hamiltonian system whose energy is reduced during the adiabatic cycling of external parameters, when initial conditions are sampled microcanonically. Combining our system with a device that measures its energy, we propose a cyclic procedure during which energy is extracted from a heat bath and converted to work, in apparent violation of the second law of thermodynamics. This paradox is resolved by deriving an explicit relationship between the average work delivered during one cycle of operation, and the average information gained when measuring the system's energy

    Wetting and Minimal Surfaces

    Get PDF
    We study minimal surfaces which arise in wetting and capillarity phenomena. Using conformal coordinates, we reduce the problem to a set of coupled boundary equations for the contact line of the fluid surface, and then derive simple diagrammatic rules to calculate the non-linear corrections to the Joanny-de Gennes energy. We argue that perturbation theory is quasi-local, i.e. that all geometric length scales of the fluid container decouple from the short-wavelength deformations of the contact line. This is illustrated by a calculation of the linearized interaction between contact lines on two opposite parallel walls. We present a simple algorithm to compute the minimal surface and its energy based on these ideas. We also point out the intriguing singularities that arise in the Legendre transformation from the pure Dirichlet to the mixed Dirichlet-Neumann problem.Comment: 22 page

    Aperture synthesis for gravitational-wave data analysis: Deterministic Sources

    Get PDF
    Gravitational wave detectors now under construction are sensitive to the phase of the incident gravitational waves. Correspondingly, the signals from the different detectors can be combined, in the analysis, to simulate a single detector of greater amplitude and directional sensitivity: in short, aperture synthesis. Here we consider the problem of aperture synthesis in the special case of a search for a source whose waveform is known in detail: \textit{e.g.,} compact binary inspiral. We derive the likelihood function for joint output of several detectors as a function of the parameters that describe the signal and find the optimal matched filter for the detection of the known signal. Our results allow for the presence of noise that is correlated between the several detectors. While their derivation is specialized to the case of Gaussian noise we show that the results obtained are, in fact, appropriate in a well-defined, information-theoretic sense even when the noise is non-Gaussian in character. The analysis described here stands in distinction to ``coincidence analyses'', wherein the data from each of several detectors is studied in isolation to produce a list of candidate events, which are then compared to search for coincidences that might indicate common origin in a gravitational wave signal. We compare these two analyses --- optimal filtering and coincidence --- in a series of numerical examples, showing that the optimal filtering analysis always yields a greater detection efficiency for given false alarm rate, even when the detector noise is strongly non-Gaussian.Comment: 39 pages, 4 figures, submitted to Phys. Rev.

    Testing Alternative Theories of Gravity using LISA

    Full text link
    We investigate the possible bounds which could be placed on alternative theories of gravity using gravitational wave detection from inspiralling compact binaries with the proposed LISA space interferometer. Specifically, we estimate lower bounds on the coupling parameter \omega of scalar-tensor theories of the Brans-Dicke type and on the Compton wavelength of the graviton \lambda_g in hypothetical massive graviton theories. In these theories, modifications of the gravitational radiation damping formulae or of the propagation of the waves translate into a change in the phase evolution of the observed gravitational waveform. We obtain the bounds through the technique of matched filtering, employing the LISA Sensitivity Curve Generator (SCG), available online. For a neutron star inspiralling into a 10^3 M_sun black hole in the Virgo Cluster, in a two-year integration, we find a lower bound \omega > 3 * 10^5. For lower-mass black holes, the bound could be as large as 2 * 10^6. The bound is independent of LISA arm length, but is inversely proportional to the LISA position noise error. Lower bounds on the graviton Compton wavelength ranging from 10^15 km to 5 * 10^16 km can be obtained from one-year observations of massive binary black hole inspirals at cosmological distances (3 Gpc), for masses ranging from 10^4 to 10^7 M_sun. For the highest-mass systems (10^7 M_sun), the bound is proportional to (LISA arm length)^{1/2} and to (LISA acceleration noise)^{-1/2}. For the others, the bound is independent of these parameters because of the dominance of white-dwarf confusion noise in the relevant part of the frequency spectrum. These bounds improve and extend earlier work which used analytic formulae for the noise curves.Comment: 16 pages, 9 figures, submitted to Classical & Quantum Gravit

    The Origin of Black Hole Entropy in String Theory

    Get PDF
    I review some recent work in which the quantum states of string theory which are associated with certain black holes have been identified and counted. For large black holes, the number of states turns out to be precisely the exponential of the Bekenstein-Hawking entropy. This provides a statistical origin for black hole thermodynamics in the context of a potential quantum theory of gravity.Comment: 18 pages (To appear in the proceedings of the Pacific Conference on Gravitation and Cosmology, Seoul, Korea, February 1-6, 1996.

    Performance of Newtonian filters in detecting gravitational waves from coalescing binaries

    Get PDF
    Coalescing binary systems are one of the most promising sources of gravitational waves. The technique of matched filtering used in the detection of gravitational waves from coalescing binaries relies on the construction of accurate templates. Until recently filters modelled on the quadrupole or the Newtonian approximation were deemed sufficient. Recently it was shown that post-Newtonian effects contribute to a secular growth in the phase difference between the actual signal and its corresponding Newtonian template. In this paper we investigate the possibility of compensating for the phase difference caused by the post-Newtonian terms by allowing for a shift in the Newtonian filter parameters. We find that Newtonian filters perform adequately for the purpose of detecting the presence of the signal for both the initial and the advanced LIGO detectors.Comment: Revtex 9 pages + 6 figures ( Can be obtained by "anonymous" ftp from 144.16.31.1 in dir /pub/rbs. Submitted to Physical Review D. IUCAA 1

    Black Hole Spectroscopy: Testing General Relativity through Gravitational Wave Observations

    Full text link
    Assuming that general relativity is the correct theory of gravity in the strong field limit, can gravitational wave observations distinguish between black hole and other compact object sources? Alternatively, can gravitational wave observations provide a test of one of the fundamental predictions of general relativity? Here we describe a definitive test of the hypothesis that observations of damped, sinusoidal gravitational waves originated from a black hole or, alternatively, that nature respects the general relativistic no-hair theorem. For astrophysical black holes, which have a negligible charge-to-mass ratio, the black hole quasi-normal mode spectrum is characterized entirely by the black hole mass and angular momentum and is unique to black holes. In a different theory of gravity, or if the observed radiation arises from a different source (e.g., a neutron star, strange matter or boson star), the spectrum will be inconsistent with that predicted for general relativistic black holes. We give a statistical characterization of the consistency between the noisy observation and the theoretical predictions of general relativity, together with a numerical example.Comment: 19 pages, 7 figure

    Estimation of parameters of gravitational waves from coalescing binaries

    Get PDF
    In this paper we deal with the measurement of the parameters of the gravitational wave signal emitted by a coalescing binary signal. We present the results of Monte Carlo simulations carried out for the case of the initial LIGO, incorporating the first post-Newtonian corrections into the waveform. Using the parameters so determined, we estimate the direction to the source. We stress the use of the time-of-coalescence rather than the time-of-arrival of the signal to determine the direction of the source. We show that this can considerably reduce the errors in the determination of the direction of the source.Comment: 5 pages, REVTEX, 2 figures (bundled via uufiles command along with this paper) submitted to Praman

    Integrating modes of policy analysis and strategic management practice : requisite elements and dilemmas

    Get PDF
    There is a need to bring methods to bear on public problems that are inclusive, analytic, and quick. This paper describes the efforts of three pairs of academics working from three different though complementary theoretical foundations and intervention backgrounds (i.e., ways of working) who set out together to meet this challenge. Each of the three pairs had conducted dozens of interventions that had been regarded as successful or very successful by the client groups in dealing with complex policy and strategic problems. One approach focused on leadership issues and stakeholders, another on negotiating competitive strategic intent with attention to stakeholder responses, and the third on analysis of feedback ramifications in developing policies. This paper describes the 10 year longitudinal research project designed to address the above challenge. The important outcomes are reported: the requisite elements of a general integrated approach and the enduring puzzles and tensions that arose from seeking to design a wide-ranging multi-method approach
    corecore