270 research outputs found
yaImpute: An R Package for kNN Imputation
This article introduces yaImpute, an R package for nearest neighbor search and imputation. Although nearest neighbor imputation is used in a host of disciplines, the methods implemented in the yaImpute package are tailored to imputation-based forest attribute estimation and mapping. The impetus to writing the yaImpute is a growing interest in nearest neighbor imputation methods for spatially explicit forest inventory, and a need within this research community for software that facilitates comparison among different nearest neighbor search algorithms and subsequent imputation techniques. yaImpute provides directives for defining the search space, subsequent distance calculation, and imputation rules for a given number of nearest neighbors. Further, the package offers a suite of diagnostics for comparison among results generated from different imputation analyses and a set of functions for mapping imputation results.
Hierarchical spatial models for predicting tree species assemblages across large domains
Spatially explicit data layers of tree species assemblages, referred to as
forest types or forest type groups, are a key component in large-scale
assessments of forest sustainability, biodiversity, timber biomass, carbon
sinks and forest health monitoring. This paper explores the utility of coupling
georeferenced national forest inventory (NFI) data with readily available and
spatially complete environmental predictor variables through spatially-varying
multinomial logistic regression models to predict forest type groups across
large forested landscapes. These models exploit underlying spatial associations
within the NFI plot array and the spatially-varying impact of predictor
variables to improve the accuracy of forest type group predictions. The
richness of these models incurs onerous computational burdens and we discuss
dimension reducing spatial processes that retain the richness in modeling. We
illustrate using NFI data from Michigan, USA, where we provide a comprehensive
analysis of this large study area and demonstrate improved prediction with
associated measures of uncertainty.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS250 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
spBayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models
Scientists and investigators in such diverse fields as geological and environmental sciences, ecology, forestry, disease mapping, and economics often encounter spatially referenced data collected over a fixed set of locations with coordinates (latitude-longitude, Easting-Northing etc.) in a region of study. Such point-referenced or geostatistical data are often best analyzed with Bayesian hierarchical models. Unfortunately, fitting such models involves computationally intensive Markov chain Monte Carlo (MCMC) methods whose efficiency depends upon the specific problem at hand. This requires extensive coding on the part of the user and the situation is not helped by the lack of available software for such algorithms. Here, we introduce a statistical software package, spBayes, built upon the R statistical computing platform that implements a generalized template encompassing a wide variety of Gaussian spatial process models for univariate as well as multivariate point-referenced data. We discuss the algorithms behind our package and illustrate its use with a synthetic and real data example.
Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets
Spatial process models for analyzing geostatistical data entail computations
that become prohibitive as the number of spatial locations become large. This
manuscript develops a class of highly scalable Nearest Neighbor Gaussian
Process (NNGP) models to provide fully model-based inference for large
geostatistical datasets. We establish that the NNGP is a well-defined spatial
process providing legitimate finite-dimensional Gaussian densities with sparse
precision matrices. We embed the NNGP as a sparsity-inducing prior within a
rich hierarchical modeling framework and outline how computationally efficient
Markov chain Monte Carlo (MCMC) algorithms can be executed without storing or
decomposing large matrices. The floating point operations (flops) per iteration
of this algorithm is linear in the number of spatial locations, thereby
rendering substantial scalability. We illustrate the computational and
inferential benefits of the NNGP over competing methods using simulation
studies and also analyze forest biomass from a massive United States Forest
Inventory dataset at a scale that precludes alternative dimension-reducing
methods
yaImpute: An R Package for kNN Imputation
This article introduces yaImpute, an R package for nearest neighbor search and imputation. Although nearest neighbor imputation is used in a host of disciplines, the methods implemented in the yaImpute package are tailored to imputation-based forest attribute estimation and mapping. The impetus to writing the yaImpute is a growing interest in nearest neighbor imputation methods for spatially explicit forest inventory, and a need within this research community for software that facilitates comparison among different nearest neighbor search algorithms and subsequent imputation techniques. yaImpute provides directives for defining the search space, subsequent distance calculation, and imputation rules for a given number of nearest neighbors. Further, the package offers a suite of diagnostics for comparison among results generated from different imputation analyses and a set of functions for mapping imputation results
- …