868 research outputs found

    Micro-Capsules in Shear Flow

    Full text link
    This paper deals with flow-induced shape transitions of elastic capsules. The state of the art concerning both theory and experiments is briefly reviewed starting with dynamically induced small deformation of initially spherical capsules and the formation of wrinkles on polymerized membranes. Initially non-spherical capsules show tumbling and tank-treading motion in shear flow. Theoretical descriptions of the transition between these two types of motion assuming a fixed shape are at variance with the full capsule dynamics obtained numerically. To resolve the discrepancy, we expand the exact equations of motion for small deformations and find that shape changes play a dominant role. We classify the dynamical phase transitions and obtain numerical and analytical results for the phase boundaries as a function of viscosity contrast, shear and elongational flow rate. We conclude with perspectives on timedependent flow, on shear-induced unbinding from surfaces, on the role of thermal fluctuations, and on applying the concepts of stochastic thermodynamics to these systems.Comment: 34 pages, 15 figure

    Membrane-transferring regions of gp41 as targets for HIV-1 fusion inhibition and viral neutralization

    Get PDF
    12 pĂĄginas, 4 figurasThe fusogenic function of HIV-1 gp41 transmembrane Env subunit relies on two different kinds of structural elements: i) a collapsible ectodomain structure (the hairpin or six-helix bundle) that opens and closes, and ii) two membrane- transferring regions (MTRs), the fusion peptide (FP) and the membrane-proximal external region (MPER), which ensure coupling of hairpin closure to apposition and fusion of cell and viral membranes. The isolation of naturally produced short peptides and neutralizing IgG-s, that interact with FP and MPER, respectively, and block viral infection, suggests that these conserved regions might represent useful targets for clinical intervention. Furthermore, MTR-derived peptides have been shown to be membrane-active. Here, it is discussed the potential use of these molecules and how the analysis of their membrane activity in vitro could contribute to the development of HIV fusion inhibitors and effective immunogensThe authors wish to thank financial support obtained from Spanish MICINN (BIO2008- 00772) (JLN) and University of the Basque Country (GIU 06/42 and DIPE08/12) (NH and JLN).Peer reviewe
    • 

    corecore