5,572 research outputs found
General solution of equations of motion for a classical particle in 9-dimensional Finslerian space
A Lagrangian description of a classical particle in a 9-dimensional flat
Finslerian space with a cubic metric function is constructed. The general
solution of equations of motion for such a particle is obtained. The Galilean
law of inertia for the Finslerian space is confirmed.Comment: 10 pages, LaTeX-2e, no figures; added 2 reference
Representations of U(1,q) and Constructive Quaternion Tensor Products
The representation theory of the group U(1,q) is discussed in detail because
of its possible application in a quaternion version of the Salam-Weinberg
theory.
As a consequence, from purely group theoretical arguments we demonstrate that
the eigenvalues must be right-eigenvalues and that the only consistent scalar
products are the complex ones. We also define an explicit quaternion tensor
product which leads to a set of additional group representations for integer
``spin''.Comment: 28 pages, Latex, Dipartimento di Fisica, Universita di Lecce
INFN-Sezione di Lecc
Renormalization of hole-hole interaction at decreasing Drude conductivity
The diffusion contribution of the hole-hole interaction to the conductivity
is analyzed in gated GaAs/InGaAs/GaAs heterostructures. We show
that the change of the interaction correction to the conductivity with the
decreasing Drude conductivity results both from the compensation of the singlet
and triplet channels and from the arising prefactor in the
conventional expression for the interaction correction.Comment: 6 pages, 5 figure
Disordered electron liquid in double quantum well heterostructures: Renormalization group analysis and dephasing rate
We report a detailed study of the influence of the electron-electron
interaction on physical observables (conductance, etc.) of a disordered
electron liquid in double quantum well heterostructure. We find that even in
the case of common elastic scattering off electrons in both quantum wells, the
asymmetry in the electron-electron interaction across and within quantum wells
decouples them at low temperatures. Our results are in quantitative agreement
with recent transport experiments on the gated double quantum well
AlGaAs/GaAs/AlGaAs heterostructures.Comment: 15 pages; 5 figure
Imaging density disturbances in water with 41.3 attosecond time resolution
We show that the momentum flexibility of inelastic x-ray scattering may be
exploited to invert its loss function, alowing real time imaging of density
disturbances in a medium. We show the disturbance arising from a point source
in liquid water, with a resolution of 41.3 attoseconds (
sec) and 1.27 ( cm). This result is used to
determine the structure of the electron cloud around a photoexcited molecule in
solution, as well as the wake generated in water by a 9 MeV gold ion. We draw
an analogy with pump-probe techniques and suggest that energy-loss scattering
may be applied more generally to the study of attosecond phenomena.Comment: 4 pages, 4 color figure
SU(4) and SU(2) Kondo Effects in Carbon Nanotube Quantum Dots
We study the SU(4) Kondo effect in carbon nanotube quantum dots, where doubly
degenerate orbitals form 4-electron ``shells''. The SU(4) Kondo behavior is
investigated for one, two and three electrons in the topmost shell. While the
Kondo state of two electrons is quenched by magnetic field, in case of an odd
number of electrons two types of SU(2) Kondo effect may survive. Namely, the
spin SU(2) state is realized in the magnetic field parallel to the nanotube
(inducing primarily orbital splitting). Application of the perpendicular field
(inducing Zeeman splitting) results in the orbital SU(2) Kondo effect.Comment: 5 pages. Some material was previously posted in cond-mat/0608573, v
Resonant Tunneling in a Dissipative Environment
We measure tunneling through a single quantum level in a carbon nanotube
quantum dot connected to resistive metal leads. For the electrons tunneling
to/from the nanotube, the leads serve as a dissipative environment, which
suppresses the tunneling rate. In the regime of sequential tunneling, the
height of the single-electron conductance peaks increases as the temperature is
lowered, although it scales more weekly than the conventional 1/T. In the
resonant tunneling regime (temperature smaller than the level width), the peak
width approaches saturation, while the peak height starts to decrease. Overall,
the peak height shows a non-monotonic temperature dependence. We associate this
unusual behavior with the transition from the sequential to the resonant
tunneling through a single quantum level in a dissipative environment.Comment: 5 pages, 5 figure
Modal quantum theory
We present a discrete model theory similar in structure to ordinary quantum
mechanics, but based on a finite field instead of complex amplitudes. The
interpretation of this theory involves only the "modal" concepts of possibility
and necessity rather than quantitative probability measures. Despite its
simplicity, our model theory includes entangled states and has versions of both
Bell's theorem and the no cloning theorem.Comment: Presented at the 7th Workshop on Quantum Physics and Logic, Oxford
University (29-30 May 2010). Revised 1 Aug 2011 in response to referee
comment
Effects of Dust Geometry in Lyman Alpha Galaxies at z = 4.4
Equivalent widths (EWs) observed in high-redshift Lyman alpha galaxies could
be stronger than the EW intrinsic to the stellar population if dust is present
residing in clumps in the inter-stellar medium (ISM). In this scenario,
continuum photons could be extinguished while the Lyman alpha photons would be
resonantly scattered by the clumps, eventually escaping the galaxy. We
investigate this radiative transfer scenario with a new sample of six Lyman
alpha galaxy candidates in the GOODS CDF-S, selected at z = 4.4 with
ground-based narrow-band imaging obtained at CTIO. Grism spectra from the HST
PEARS survey confirm that three objects are at z = 4.4, and that another object
contains an active galactic nuclei (AGN). If we assume the other five (non-AGN)
objects are at z = 4.4, they have rest-frame EWs from 47 -- 190 A. We present
results of stellar population studies of these objects, constraining their
rest-frame UV with HST and their rest-frame optical with Spitzer. Out of the
four objects which we analyzed, three objects were best-fit to contain stellar
populations with ages on the order of 1 Myr and stellar masses from 3 - 10 x
10^8 solar masses, with dust in the amount of A_1200 = 0.9 - 1.8 residing in a
quasi-homogeneous distribution. However, one object (with a rest EW ~ 150 A)
was best fit by an 800 Myr, 6.6 x 10^9 solar mass stellar population with a
smaller amount of dust (A_1200 = 0.4) attenuating the continuum only. In this
object, the EW was enhanced ~ 50% due to this dust. This suggests that large EW
Lyman alpha galaxies are a diverse population. Preferential extinction of the
continuum in a clumpy ISM deserves further investigation as a possible cause of
the overabundance of large-EW objects that have been seen in narrow-band
surveys in recent years.Comment: Submitted to the Astrophysical Journal. 35 pages, 7 figures and 4
table
- …