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We report a detailed study of the influence of the electron-electron interaction on physical observ-
ables (conductance, etc.) of a disordered electron liquid in double quantum well heterostructure.
We find that even in the case of common elastic scattering off electrons in both quantum wells, the
asymmetry in the electron-electron interaction across and within quantum wells decouples them at
low temperatures. Our results are in quantitative agreement with recent transport experiments on
the gated double quantum well AlxGa1−xAs/GaAs/AlxGa1−xAs heterostructures.
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I. INTRODUCTION

Disordered two-dimensional (2D) electronic systems
have been remaining in the focus of experimental and
theoretical research for more than three decades.1 The
experimental discovery2,3 of the metal-insulator tran-
sition (MIT) in a high mobility silicon metal-oxide-
semiconductor field-effect transistor (Si-MOSFET) in
1994 became a challenge to a theory. Although during
last decade the behavior of resistivity similar to that of
Ref. [2,3] has been found experimentally in a wide va-
riety of two-dimensional electron systems,4 the MIT in
two dimensions still calls for deeper theoretical and ex-
perimental understanding.
Very likely, the most promising theoretical framework

for studying the 2D MIT is provided by the effective low-
energy theory, initially developed by Finkelstein, that
combines the diffusive dynamics due to disorder and
strong electron-electron interaction.5 Moreover, it is the
Finkelstein theory that suggested metallic behavior at
low temperatures long before the experimental discov-
ery of the MIT in a Si-MOSFET.5,6 Recently, Punnoose
and Finkelstein7 have shown a possibility for the exis-
tence of the MIT in the special model of 2D electron
system with SU(N ) degrees of freedom in the limit of
the large number of multiplets, N → ∞. On the other
hand, the current theoretical results8,9 do not support
the existence of MIT for electrons interacting in the sin-
glet channel only (N = 1). Therefore, the presence
of additional degrees of freedom (spins, valley isospins
etc.) plays a crucial role for the existence of the MIT
in 2D disordered electron systems. In fact, the impor-
tance of the multiplet channels of the interaction has been
confirmed experimentally in Si-MOSFET where a weak
magnetic field applied parallel to the 2D plane changes
the behavior of resistivity from metallic to insulating at
low temperatures.10–12 These experimental findings have
been explained in framework of the Finkelstein theory in
the presence of Zeeman and valley splitting.13 The effect
of intervalley scattering has been taken into account as

well.14

Recently, the Finkelstein theory for disordered elec-
tron liquid in Si-MOSFET has been subjected to a de-
tailed experimental check. In particular, the metallic
behavior of resistivity not far away from the MIT,15

the increase of interaction parameter in the multiplet
channels,16–18 and the two-parameter scaling near MIT19

have been observed in experiments. Such the analysis in
Si-MOSFET is complicated by the presence of (uncon-
trolled) large valley splitting and intervalley scattering
rate, ∆v ≈ 1/τv ≈ 1K.20,21

As known,22 in n-AlAs quantum wells, 2D electrons
can also populate two valleys. In addition to Si-
MOSFETs this system offers opportunity for an exper-
imental investigation of the interplay between the spin
and valley degrees of freedom. Using a symmetry break-
ing strain to tune the valley occupation of the 2D electron
system in the n-AlAs quantum well, as well as a parallel
magnetic field to adjust the spin polarization, the spin
– valley interplay has been experimentally studied.23,24

However, the electron concentrations in the experiment
were at least three times larger than the critical one cor-
responding to the MIT.22 Therefore, the spin-valley in-
terplay in n-AlAs quantum well has been studied only in
the region of a good metal, very far from the MIT.
Disordered electron liquid in double quantum well het-

erostructures represents a 2D system in which electrons
in addition to spin have the other degree of freedom: the
isospin associated with a quantum well. In spite of a
number of interesting physical phenomena observed in
electron liquids in double quantum well heterostructures
without and under strong magnetic field, e.g., Coulomb
drag,25 Bose-Einstein condensation of excitons26, ferro-
magnetic27 and canted antiferromagnetic phases,28 the
metal-insulator transition has not been yet addressed ex-
perimentally. Transport of electrons in double quantum
well heterostuctures has been studied experimentally29,30

only in the metallic regime far from the region in which
MIT is expected.
Recently, detailed experimental research on the in-
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terference and interaction corrections to conductance
of electrons in a double quantum well heterostructure
has been performed.31,32 In particular, two very distinct
physical situations have been investigated: i) both quan-
tum wells have equal electron concentrations and mobil-
ities; ii) one quantum well remains with almost the same
electron concentration as in case i), whereas the other is
empty by applying the gate voltage. Surprisingly, it was
found that the dephasing rate and interaction correction
to the conductance are almost the same for cases i) and
ii).

In the present paper, motivated by the experiments
of Refs. [31,32], we develop the theory of the disor-
dered electron liquid formed in a heterostructure with
two almost identical quantum wells. We concentrate on
the case of equal electron concentrations and mobilities
in both quantum wells [corresponding to the case i) of
Refs. 31,32]. This case will be termed as balance in what
follows.

We restrict our study to temperatures (T ) satisfying
the following condition: 1/τ+−,∆s,∆SAS ≪ T ≪ 1/τtr.
Here 1/τ+− stands for the rate of elastic scattering be-
tween symmetric and antisymmetric states in the dou-
ble quantum well structure, ∆SAS the splitting of these
symmetric and antisymmetric states, ∆s the Zeeman
splitting, and τtr the elastic transport mean free time.
The temperature behavior of the interaction correction
to the total conductance is governed by one singlet and
15 multiplet diffusive modes. We find that the latter
splits into three inequivalent groups of one, six, and
eight modes. This grouping occurs due to asymmetry in
electron-electron interactions across and within quantum
wells which breaks the rotational symmetry in the com-
bined spin and isospin spaces [SU(4)]. This reduced sym-
metry is a distinctive feature of double quantum well het-
erostructures at the balance and is absent in two-valley
systems in Si-MOSFETs and n-AlAs quantum wells. We
identify all relevant interaction parameters and estimate
their dependence on the distance between the quantum
wells. To describe the system at low temperatures and
beyond interaction corrections to conductance, we derive
the non-linear sigma model and study its renormalization
in the one-loop approximation. As we demonstrate, the
renormalization group equations describing the length
scale dependence of the total conductance and interac-
tion parameters drive the system towards the fixed point
corresponding to two separate quatum wells. In spite of
the symmetry breaking between 15 multiplet modes, the
renormalization group equations predict the metallic be-
havior of the conductance at low temperatures. Finally,
we generalize the expression for the dephasing rate of
electrons due to the presence of electron-electron inter-
action known33,34 for a single quantum well to the case
of double quantum well heterostructures. We find that
our results are in good quantitative agreement with ex-
perimental data of Refs. [31,32].

The paper is organized as follows. In Section II we
introduce the microscopic Hamiltonian, identify relevant

interaction parameters, study its dependence on the dis-
tance between quantum wells and introduce the nonlin-
ear sigma model that describes the low-energy excitations
in the disordered interacting electron system. Then, in
Sec. III we consider the renormalization of the nonlinear
sigma model in the one-loop approximation, derive cor-
responding renormalization group equations, and discuss
renormalization group flow. We derive expressions for
the dephasing rate due to electron-electron interactions
in Sec. IV. Next in Sec. V we perform detailed compari-
son between our theory and recent experimental data on
transport in double quantum well heterostructures. We
end the paper with conclusions (Sec. VI).

II. FORMALISM

A. Microscopic Hamiltonian

We consider 2D interacting electrons in double quan-
tum well heterostructures in the presence of quenched
disorder at low temperatures T ≪ τ−1

tr . In the case of
two almost identical quantum wells an electron annihila-
tion operator can be written as a linear combination of
symmetric and antisymmetric states:

ψσ(R) = ψστ (r)ϕτ (z), ϕτ (z) =
ϕl(z) + τϕr(z)√

2
. (1)

Here electron motion along z axis is confined by the quan-
tum wells, r denotes a vector in plane perpendicular to
the z axis, and R = r + zez. The superscript σ = ±
denotes electron spin projection, τ = ± enumerates sym-
metric (+) and antisymmetric (−) states in the double
quantum well structure and ψστ is the annihilation oper-
ator of an electron with the spin and isospin projections
equal σ/2 and τ/2, respectively. The normalized enve-
lope function ϕl,r(z) = ϕ(z ± d/2) corresponds to the
wave function of an electron localized in a single left/right
well. In what follows, we assume a negligible overlap
between the states in two quantum wells: the width of
an electron state in a quantum well [

∫

dz ϕ4(z)]−1 ≪ d
where d is the distance between the centers of the quan-
tum wells.
In the path-integral formulation, interacting electrons

in the presence of the random potential V (R) are de-
scribed by the following grand partition function

Z =

∫

D[ψ̄, ψ]eS[ψ̄,ψ] (2)

with the imaginary time action (β = 1/T )

S = −
∫ β

0

dt
{

∫

drψ̄στ (rt)
[

∂t+H0

]

ψστ (rt)−Ldis−Lint

}

.

(3)
The single-particle Hamiltonian

H0 = − ∇2

2me
− µ+

1

2
(∆sσ +∆SASτ) (4)
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describes a 2D quasiparticle with mass me. Magnetic
field B perpendicular to the z axis induces the Zee-
man splitting ∆s = gµBB. The energy difference be-
tween symmetric and antisymmetric states in a dou-
ble quantum well structure yields the splitting ∆SAS ≃
2ϕ(d/2)ϕ′(d/2)/me.

35 The chemical potential is denoted
as µ, g stands for the effective electron g-factor and µB
the Bohr magneton. The single-particle Hamiltonian (4)
is completely analogous to one for a Si(001)-MOSFET. In
latter case, index τ enumerates valleys and ∆SAS plays
a role of a valley splitting.
Next,the term

Ldis = −
∫

dr ψ̄στ1(rt)Vτ1τ2(r)ψ
σ
τ2(rt) (5)

describes electron scattering off a random potential
V (R). It involves matrix elements

Vτ1τ2(r) =

∫

dz V (R)ϕτ1 (z)ϕτ2(z). (6)

In general, the matrix elements Vτ1τ2 induce transitions
between symmetric and antisymmetric states in a double
quantum well structure. In the case of symmetric random
potential: V (r, z) = V (r,−z), the system is protected
from the symmetric-antisymmetric scattering.
In accordance with the experimental conditions re-

ported in Ref. [31,32], we assume that impurities are con-
centrated in the middle between two quantum wells. We
suppose that the random potential created by impurities
has the Gaussian distribution, and

〈V (R)〉 = 0, 〈V (R1)V (R2)〉 =W (|r1 − r2|, |z1|, |z2|),
(7)

where W decays as the function of its variables at a typ-
ical distance dW . If the condition

[

∫

dz ϕ4(z)
]−1

≪ d, (8)

holds, we can neglect the small difference [proportional
to ϕ(d/2)ϕ′(d/2)], between symmetric-symmetric and
antisymmetric-antisymmetric scattering rates. Then

〈Vτ1τ2(r1)Vτ3τ4(r2)〉 =W (|r1 − r2|, d/2, d/2) δτ1τ2δτ3τ4 .
(9)

Provided correlations in W are short-ranged,37 we find

〈Vτ1τ2(r1)Vτ3τ4(r2)〉 =
1

2πντi
δτ1τ2δτ3τ4δ(r1 − r2), (10)

1

τi
= 2πν

∫

d2rW (|r|, d/2, d/2).

Here ν is the thermodynamic density of states of 2D elec-
trons (including spin). We emphasize that electrons in
both quantum wells are subjected to correlated disorder
since they scatter off the very same random potential.
Recently, under such assumptions, the transconductance

of a double quantum well structure (the Coulomb drag
effect with correlated disorder) has been studied by one
of the authors.36

The small asymmetry in the impurity distribution
along z axis will lead to the scattering between sym-
metric and antisymmetric states in the double quantum
well structure. Its rate can be estimated as 1/τ+− ∼
(b/d)2/τi ≪ 1/τi where b is a typical length characteriz-
ing asymmetry. We neglect 1/τ+− in what follows.
The interaction part of the action (3) reads

Lint = −1

2

∫

dRdR′ρ(Rt)U(|R −R′|) ρ(R′t) (11)

where U(R) = e2/ǫR. The dielectric constant is de-
noted as ǫ. Expanding the density operator ρ(Rt) =
ψ̄στ1(rt)ψ

σ
τ2(rt)ϕτ1(z)ϕτ2(z) and assuming again that con-

dition (8) holds we obtain

Lint = −1

8

∫

drdr′ ψ̄σ1

τ1 (rt)ψ
σ1

τ2 (rt)ψ̄
σ2

τ3 (r
′t)ψσ2

τ4 (r
′t)

×
[

(1 + τ1τ2τ3τ4)U11(|r − r′|)

+(τ1τ2 + τ3τ4)U12(|r − r′|)
]

. (12)

Here

U11(r) =
e2

ǫ

∫

dzdz′
ϕ2
l (z)ϕ

2
l (z

′)
√

r2 + (z − z′)2
≈ e2

ǫr
(13)

is the standard Coulomb interaction between electrons
in a single well. The interaction between electrons in
different quantum wells

U12(r) =
e2

ǫ

∫

dzdz′
ϕ2
l (z)ϕ

2
r(z

′)
√

r2 + (z − z′)2
≈ e2

ǫ
√
r2 + d2

(14)
takes into account that electrons are separated by the
distance d. Due to the difference between U11 and U12

the interaction Lagrangian Lint is not invariant under
global SU(4) rotations of the electron operator ψστ in the
combined spin-isospin space. It is the interaction part of
the action (3) that distinguishes the disordered electron
liquid in double quantum well heterostructures from the
one in a Si(001)-MOSFET.
As usual, we single out regions in the momentum space

of small momentum transfer5,6,38,39. Then the low energy
part of Lint can be written as

Lint =
1

4ν

∫ ′ dq

(2π)2

3
∑

a,b=0

Fab(q)m
ab(q)mab(−q), (15)

mab(q) =

∫

dk

(2π)2
ψ̄(k + q)tabψ(k). (16)

Here ψ̄ = {ψ̄+
+, ψ̄

−
+ , ψ̄

+
−, ψ̄

−
−}, ψ = {ψ+

+ , ψ
−
+ , ψ

+
−, ψ

−
−}T ,

the ‘prime’ at the integral sign denotes the integration
region q . l−1 (l is the elastic mean free path), and 16
matrices tab = τa⊗σb stand for the generators of SU(4).
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Pauli matrices τa, a = 0, 1, 2, 3 act in the isospin space of
two wells and Pauli matrices σb, b = 0, 1, 2, 3 act in the
spin space. The matrix of interaction parameters reads

F(q) =









Fs Ft Ft Ft
F̃s Ft Ft Ft
Fv Fv Fv Fv
Fv Fv Fv Fv









(17)

where

Ft = −ν
2
〈U scr

11 (0)〉FS , Fv = −ν
2
〈U scr

12 (0)〉FS ,
Fs = ν[U11(q) + U12(q)] + Ft,

F̃s = ν[U11(q)− U12(q)] + Ft. (18)

Here U11(q) = 2πe2/qǫ, U12(q) = U11(q) exp(−qd). The
quantities Ft and Fv are analogous to the standard
Fermi liquid interaction parameters in the triplet chan-
nel. They involve averaging of the static part of dynami-
cally screened interaction U scr

11/12(q, ω) over the Fermi sur-

face. In the case of equal electron concentrations and
mobilities in both quantum wells

〈U scr
11/12(0)〉FS =

∫ 2π

0

dθ

2π
U scr
11/12(2kF sin(θ/2), 0) (19)

where kF is Fermi momentum for a single quantum well.
The interaction parameter Fs involves the long-range
part of the Coulomb interaction. In the limit q → 0 it be-
comes Fs(q) ≈ 2κ/q → ∞ where κ = 2πe2ν/ǫ. Within
the same accuracy, we find

F̃s = κd + Ft. (20)

At d = 0—when both quantum wells coincide—the in-
teraction parameters are equal: F̃s = Ft = Fv. Then
the matrix F corresponds to the case of electron liq-
uid with two valleys as it occurs in Si(001)-MOSFET.
In the absence of ∆SAS and ∆s the action (3) becomes
invariant under global SU(4) rotations of the fermionic
fields. In the opposite case of d → ∞, the double quan-
tum well heterostructure is equivalent to two indepen-
dent single quantum wells. Then we obtain F̃s = Fs, and
Fv = 0. The action (3) (for ∆SAS = ∆s = 0) becomes
invariant under global SU(2) rotations of electron spin
in each quantum well independently. For intermediate
values of d, the action (3) is also invariant under global
SU(2)×SU(2) rotations provided ∆SAS and ∆s vanish.

B. Dynamically screened Coulomb interaction

The interaction parameters Ft and Fv involve the
screened Coulomb interaction. Solving the Dyson equa-
tions in the random phase approximation (RPA) (see
Fig. 1), we obtain the following results for the dynam-

= +

+

ba a a

a

a a

a a b

b

- -

b

FIG. 1: Dyson equation for the screened electron-electron in-
teraction in RPA. Thick wavy line denotes screened interac-
tion, thin wavy line is bare interaction, solid lines are electron
Green’s functions, and dashed lines are impurity lines. Indices
a and b can be 1 or 2. Index ā equals 1 (2) if index a is 2 (1).

ically screened interactions:40,41

U scr
11 =

U11 +Π2[U
2
11 − U2

12]

1 + [Π1 +Π2]U11 + Π1Π2[U2
11 − U2

12]
, (21)

U scr
12 =

U12

1 + [Π1 +Π2]U11 + Π1Π2[U2
11 − U2

12]
, (22)

U scr
22 =

U11 +Π1[U
2
11 − U2

12]

1 + [Π1 +Π2]U11 + Π1Π2[U2
11 − U2

12]
. (23)

The polarization operators can be written in diffusive
approximation as

Πj(q, ω) = ν
Djq

2

Djq2 − iω
, j = 1, 2 (24)

where Dj is the diffusion coefficient in the j-th quantum
well. We mention that for D1 6= D2 the dynamically
screened Coulomb interaction in the first well U scr

11 (q, ω)
does not coincide with the one (U scr

22 (q, ω)) in the second
well.
If the electron concentrations and mobilities in the

quantum wells are the same then D1 = D2. In this case
U scr
11 = U scr

22 and

U scr
11/12 =

κ

2νq

(

Dq2 − iω
)

{

1 + e−qd

Dq
[

q + κ(1 + e−qd)
]

− iω

± 1− e−qd

Dq
[

q + κ(1 − e−qd)
]

− iω

}

. (25)

As one can see, at qd ≫ 1 the effect of the right well
on the dynamically screened interaction in the left well
is negligible. In the opposite case, qd ≪ 1 the right well
affects the dynamically screened interaction in the left
well only at κd . 1.

C. Estimates for the interaction parameters

Let us estimate the interaction parameters Ft and Fv in
the case of equal electron concentrations in both quantum
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wells. By using Eqs. (21) and (22) we find

Ft ± Fv = −
2π
∫

0

dθ

4π

κ(1 ± e−2kF d sin θ/2)

2kF sin θ
2 + κ(1 ± e−2kF d sin θ/2)

.

(26)
To justify the RPA which has been used in derivation of
Eqs. (21)-(22) we assume that the condition κ/kF ≪ 1
holds. As follows from Eq. (26), both Ft and Fv are neg-

ative and |Ft| > |Fv|. The interaction parameter F̃s is
negative at small d and positive at large d. The depen-
dence of the critical distance dc at which F̃s vanishes on
the parameter κ/kF is shown in Fig. 2. We mention that

|F̃s| 6 |Ft| for d < dc.
It is instructive to compare the results for Ft, Fv and

F̃s with the case of a single quantum well for which the
interaction parameter in the triplet channel is given as39

F 0
t = −

2π
∫

0

dθ

4π

κ

2kF sin(θ/2) + κ
= − 1

2π
G0(κ/2kF ),

G0(x) =
x√

1− x2
ln

1 +
√
1− x2

1−
√
1− x2

. (27)

In the limit x → 0 the function G0(x) acquires the fol-
lowing asymptotic form

G0(x) ≈ x ln(2/x), x≪ 1. (28)

Provided kFd ≫ 1, the interaction parameters for the
case of double quantum wells with equal electron con-
centrations can be estimated as

Ft = F 0
t +

1

8πkFd
G1(κd), Fv =

1

8πkFd
G2(κd), (29)

G1(x) =
3x exE1(x)

x+ 1
+

2x e−2x/(x−1)

x2 − 1
E1

(

− 2x

x− 1

)

,

G2(x) = G1(x)−
4x exE1(x)

x+ 1
.

Here E1(x) =
∫∞

x dt exp(−t)/t is the exponential inte-
gral.
Finally, we mention that the interaction parameters

Ft and Fv can be estimated (from above) as |Ft| 6
[G0(κ/kF )+G0(κ/2kF )]/(4π) and |Fv| 6 G0(κ/kF )/(4π).
Even for values of κ/kF ∼ 1, it yields |Ft| . 0.3 and
|Fv| . 0.2.

D. Non-linear σ model

At low temperatures, Tτtr ≪ 1, the effective quantum
theory of 2D disordered interacting electrons described
by the microscopic action (3) is given in terms of the
non-linear sigma model. The latter describes interaction
between low-enegy modes which are the so-called “Dif-
fusons” and “Cooperons”. As well-known,33,42,43 the in-
terference (“Cooperon”) contribution to the conductance

0 0.5 1
¿ �kF0

0.1

0.2

¿d

FIG. 2: Value of the parameter κd at which F̃s = 0 versus
κ/kF .

is not sensitive to the presence of ∆s and ∆SAS (in the
absence of 1/τ+−). Furthermore, the interference cor-
rection is cut off by weak magnetic fields and does not
influence the scaling of observables with temperature at
B & 1/eDτϕ. Therefore, we shall ignore the interference
correction in the intermediate calculations for a sake of
simplicity and shall discuss its role in Sec. V.
In general, Cooperons are also involved in the interac-

tion correction to the conductance and the renormaliza-
tion of other interaction couplings. The corresponding
contributions are proportional to the interaction param-
eter in the Cooper channel. For Coulomb interaction,
the latter is repulsive and remains small in the course of
the renormalization for 2D electron systems.5 Moreover,
physically, a moderately weak magnetic field B & T/eD
applied parallel to the z axis is enough to suppress the
interaction effects in the Cooper channel.44

Neglecting the Cooper channel, the effective theory in-
volves unitary matrix field variables Qα1α2;σ1σ2

mn;τ1τ2 (r) which

obey the nonlinear constraint Q2(r) = 1. The integers
αj = 1, 2, . . . , Nr denote the replica indices. The inte-
gers m,n correspond to the discrete set of Matsubara
frequencies εn = πT (2n+ 1).
The effective sigma-model action is

S = Sσ + SF + SSB. (30)

Here Sσ represents the free electron part45

Sσ = −σxx
32

∫

dr tr(∇Q)2 (31)

with σxx = 4πν∗D denoting the mean-field conductance
in units of e2/h. The thermodynamic density of states
ν∗ = m∗/π involves an effective mass m∗ renormalized
due to interactions. The symbol tr stands for the trace
over replica, the Matsubara frequencies, spin and isospin
indices. The Finkelstein term5,46

SF = −πT
4

∫

dr
∑

αn;ab

Γab tr I
α
n tabQ(r) tr Iα−ntabQ(r)

+4πTz

∫

dr tr η(Q − Λ)− 2πTz

∫

dr tr ηΛ (32)
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involves the electron-electron interaction amplitudes Γab.
The bare value of the factor z is determined by the ther-
modynamic density of states: z = πν∗/4. The quantity z
has been originally introduced by Finkelstein in order to
ensure the consistence of the renormalization group equa-
tions with the particle number conservation.5 Physically,
the renormalization of z is responsible for renormaliza-
tion of the specific heat47 and determines the relation
between the frequency and length scales, thus playing a
crucial role at the criticality near the MIT.5

The interaction amplitudes Γab are related to the in-
teraction parameters Fab introduced above as5,6,38 Γab =
−zFab/(1 + Fab). Therefore, the matrix Γ has the struc-
ture similar to the matrix F (see Eq. (17)) and

Γs = −z, Γ̃s = −zγ̃s, Γt = −zγt, Γv = −zγv,

γ̃s = − F̃s

1 + F̃s
, γt = − Ft

1 + Ft
, γv = − Fv

1 + Fv
. (33)

The matrices Λ, η and Iγk are given as

Λαβnm = sign (ωn)δnmδ
αβt00, ηαβnm = nδnmδ

αβt00,

(Iγk )
αβ
nm = δn−m,kδ

αγδβγt00. (34)

The action Sσ + SF is invariant under the global ro-
tations Qαβ;σ1σ2

nm;τ1τ2(r) → uτ1τ3σ1σ3
Qαβ;σ3σ4

nm;τ3τ4(r)[u
−1]τ4τ2σ4σ2

with

u =
∑1

a=0

∑3
b=0 uabtab. This rotation correspond to the

global SU(2)× SU(2) symmetry of the action Sσ + SF .
The presence of ∆s and/or ∆SAS generates the sym-

metry breaking terms. In general, they can be written
as5

SSB = izab∆ab

∫

dr tr tabQ+
Nrzab
πT

∫

dr∆2
ab. (35)

For the symmetry breaking by the Zeeman splitting one
can choose tab = t03 and ∆03 = ∆s. In the case of the
splitting ∆SAS , the generator tab equals t30. Splitting
∆ab set the cut-off for a pole in the diffusion modes (“dif-
fusons”). In what follows, we shall be interested in high
temperatures (T ≫ ∆ab) or, correspondingly, in short

length scales L≪
√

D/∆ab such that the cut-off is irrel-
evant and the electron system behaves as if no symmetry
breaking terms are exist. We shall use the symmetry
breaking term SSB only as a source, assuming infinitesi-
mal ∆ab.

1. F-algebra

The action (30) involves the matrices which are for-
mally defined in the infinite Matsubara frequency space.
In order to operate with them we have to introduce a cut-
off for the Matsubara frequencies. One should send the
cut-off to infinity at the end of all calculations. Then, the
set of rules which is called F -algebra can be established.46

The global rotations of Q with the matrix exp(iχ̂) where

χ̂ =
∑

α,n χ
α
nI

α
n play the important role.46,48 For exam-

ple, F -algebra allows us to establish the following rela-
tions

tr Iαn tabe
iχ̂Qe−iχ̂ = tr Iαn tabe

iχ0Qe−iχ0 + 8in(χab)
α
−n ,

tr ηeiχ̂Qe−iχ̂ = tr ηQ+
∑

αn;ab

in(χab)
α
n tr I

α
n tabQ

− 4
∑

αn;ab

n2(χab)
α
n(χab)

α
−n (36)

where χ0 =
∑

α χ
α
0 I

α
0 . With the help of Eqs. (36) one

can check that the relation Γs = −z guarantees the so-
called F -invariance.46 It is the invariance of the action
Sσ + SF under the global rotation of the matrix Q with
χab = χδa0δb0.

E. Physical observables

The most significant physical quantities in the the-
ory containing information on its low-energy dynamics
are physical observables σ′

xx, z
′, and z′ab associated with

the mean-field parameters σxx, z, and zab of the ac-
tion (30). The observable σ′

xx is the total DC conduc-
tance as obtained from the linear response to an elec-
tromagnetic field. The observable z′ is related with the
specific heat.47 The observables zab determine the static
generalized susceptibilities of the 2D electron system5,49

as χab = 2z′ab/π. The conductance σ′
xx can obtained

from

σ′
xx(iωn) = −σxx

16n

〈

tr[Iαn , Q][Iα−n, Q]
〉

+
σ2
xx

64Dn

∫

dr′〈〈tr IαnQ(r)∇Q(r) tr Iα−nQ(r′)∇Q(r′)〉〉
(37)

after the analytic continuation to the real frequencies:
iωn → ω + i0+ at ω → 0. The expectation values are
defined with respect to the theory (30) and D = 2 stands
for the spatial dimension. The physical observable z′ can
be extracted from the derivative of the thermodynamic
potential Ω per the unit volume with respect to temper-
ature,46

z′ =
1

2π tr ηΛ

∂

∂T

Ω

T
. (38)

The observables z′ab are given as

z′ab =
π

2Nr

∂2Ω

∂∆2
ab

∣

∣

∣

∣

∣

∆ab=0

. (39)

It is worth mentioning that, alternatively, the observable
parameters σ′

xx, z
′
ab and z

′ can be found from the back-
ground field procedure.
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III. ONE-LOOP RENORMALIZATION

A. Perturbative expansions

To define the theory for the perturbative expansions
we use the “square-root” parameterization:

Q =W + Λ
√

1−W 2, W =

(

0 w
w† 0

)

. (40)

The action (30) can be written as the infinite series in
the independent fields w and w†. At short length scales
L≪

√

σxx/(zab∆ab) which we are interested in, the sym-
metry breaking term SSB can be omitted. Then the
propagators for fields w and w† can be written in the
following form

〈[wab(q)]α1α2

n1n2
[w†
cd(−q)]α4α3

n4n3
〉= 4

σxx

×Dq(ω12)
[

δn1n3
− 32πTΓab

σxx
δα1α2D(ab)

q (ω12)
]

×δab;cdδα1α3δα2α4δn12,n34
, (41)

where ω12 = εn1
− εn2

= 2πTn12 = 2πT (n1 − n2) and

D−1
q (ωn) = q2 +

16zωn
σxx

,

[D(ab)
q (ωn)]

−1 = q2 +
16(z + Γab)ωn

σxx
.

(42)

We use the convention that the Matsubara frequency
indices with odd subscripts n1, n3, . . . run over non-
negative integers whereas those with even subscripts
n2, n4, . . . run over negative integers.

B. Relation of zab with z and Γab

The dynamical susceptibility χab(ω, q) which describes
the linear response of the system to time-dependent sym-
metry breaking amplitude ∆ab can be obtained from5

χab(iωn, q) =
2zab
π

− Tz2ab〈tr Iαn tabQ(q) tr Iα−ntabQ(−q)〉
(43)

by the analytic continuation to the real frequencies:
iωn → ω + i0+. In the tree level approximation Eq. (43)
yields

χab(iωn, q) =
2zab
π

(

1− 16zabωn
σxx

Dab
q (ωn)

)

. (44)

The action Sσ+SF is invariant under the global rotations
Q → uQu−1 with u =

∑1
a=0

∑3
b=0 uabtab. This implies

that the quantities corresponding to operators m0b and
m1b conserve, i.e., χ0b(ω, q = 0) = χ1b(ω, q = 0) = 0.
In order to be consistent with this physical requirement,
the relations

zab = z + Γt = z(1 + γt), a = 0, 1, b = 1, 2, 3,

z10 = z + Γ̃s = z(1 + γ̃s). (45)

should hold. Therefore, renormalization of the interac-
tion amplitudes Γ̃s and Γt can be easily found from, e.g.,
renormalized quantities z′01 and z′10. However, it is not
the case for the interaction amplitude Γv = zγv. There
is no simple relation between Γv and

zv = z2b = z3b, b = 0, . . . , 3. (46)

Therefore, the physical observables σ′
xx, z

′, γ̃′s, γ
′
t, γ

′
v

and z′v completely determines the renormalization of the

theory (30) at short length scales L≪
√

σxx/zab∆ab.

C. One-loop results

Evaluation of the conductance according to Eq. (37)
in the one-loop approximation yields

σ′
xx(iωn) = σxx −

128πT

ωnσxxD

∫

dDp

(2π)D
p2

∑

ab

Γab
∑

ωm>0

×min{ωm, ωn}Dp(ωm + ωn)Dp(ωm)D(ab)
p (ωm). (47)

Performing the analytic continuation to the real frequen-
cies, iωn → ω + i0+, one obtains the DC conductance in
the one-loop approximation:

σ′
xx = σxx +

32

σxxD
Im

∫

dDp

(2π)D
p2

∑

ab

Γab

∫

dΩ

× ∂

∂Ω

(

Ωcoth
Ω

2T

)

[DR
p (Ω)]

2D(ab),R
p (Ω). (48)

Here DR
p (Ω) and D

(ab),R
p (Ω) are retarded propagators

corresponding to Dp(ωn) and D
(ab)
p (ωn), respectively:

[DR
p (Ω)]

−1 = p2 − (16z/σxx) iΩ ,

[D(ab),R
p (Ω)]−1 = p2 − (16(z + Γab)/σxx) iΩ .

(49)

We mention that the result (48) can be also obtained with
the help of the background field procedure50 applied to
the action (31)-(32).
In order to compute z′, we have to evaluate the ther-

modynamic potential Ω. In the one-loop approximation
we find

T 2∂Ω/T

∂T
= 8NrT

∑

ωn>0

ωn

[

z +
2

σxx

∑

ab

∫

dDp

(2π)D

×
[

(z + Γab)D
(ab)
p (ωn)− zDp(ωn)

]]

. (50)

Following definition (38), we obtain from Eq. (50)

z′ = z +
2

σxx

∑

ab

Γab

∫

dDp

(2π)D
Dp(0). (51)

Next, we evaluate in the one-loop approximation the gen-
eralized susceptibility χab(iωn, q) at q = 0 and ωn → 0.
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Then, according to Eq. (39), we find

z′ab = zab +
32πz2ab
σ2
xx

∑

cd;ef

[

Cabcd;ef
]2

∫

dDp

(2π)D
T

∑

ωm>0

×
[

D(ef)
p (ωm)D(cd)

p (ωm)−D2
p(ωm)

]

, (52)

where Cabcd;ef denotes the structural constants of SU(4):

[tcd, tef ] =
∑

ab Cabcd;ef tab. Applying Eq. (52) for (ab) =

(10) and (ab) = (01), and by virtue of relations (45) we
obtain

z′ + Γ̃′
s = z + Γ̃s −

210π(z + Γ̃s)
2

σ2
xx

∫

dDp

(2π)D
T

∑

ωm>0

×
{

[

D(20)
p (ωm)

]2 −D2
p(ωm)

}

, (53)

z′ + Γ′
t = z + Γt −

29π(z + Γt)
2

σ2
xx

∫

dDp

(2π)D
T

∑

ωm>0

×
{

[

D(01)
p (ωm)

]2
+
[

D(20)
p (ωm)

]2 − 2D2
p(ωm)

}

. (54)

In order to find renormalization of Γv, one cannot use
the static generalized susceptibility since there exists no
simple relation between zv and Γv. We use the the
background-field renormalization procedure (see details
in Appendix A) and find

Γ′
ab = Γab −

1

8σxx

∫

dDp

(2π)D
Dp(0)

∑

cd;ef

Γcd
[

sp(tcdtef tab)
]2

−32πT

σ2
xx

∑

ωm>0

∫

dDp

(2π)D

∑

cd;ef

[

Cabcd;ef
]2

{

Γ2
abD

2
p(ωm)

−
[

ΓcdΓef + Γ2
ab − 2ΓabΓcd

]

D(cd)
p (ωm)D(ef)

p (ωm)
}

.

(55)

Here symbol sp denotes trace over spin and isospin in-
dices. Using Eq. (55) for (ab) = (02) , we obtain

Γ′
v = Γv − 2(Γs − Γ̃s)

σxx

∫

dDp

(2π)D
Dp(0)

+
210πΓ2

v

σxx
T

∑

ωm>0

∫

dDp

(2π)D
D2
p(ωm). (56)

It is worthwhile to mention that the results (51), (53)
and (54) can be also derived from Eq. (55). Equa-
tions (48) (51), (53), (54) and (56) allow us to extract
one-loop renormalization of conductance σxx, parameter
z and interaction amplitudes Γ̃s, Γt and Γv.

D. Renormalization group equations

Applying the minimal subtraction scheme (see, e.g.,
Ref. 50) to Eqs. (48), (51), (54), (53) and (56), we de-
rive the following one-loop results for the renormalization

group (RG) equations which determine the T = 0 behav-
ior of the physical observables with changing the length
scale L in D = 2 dimensions:

dσxx
dξ

= − 2

π

[

1 + f(γ̃s) + 6f(γt) + 8f(γv)
]

, (57)

dγ̃s
dξ

=
1 + γ̃s
πσxx

[

1− 6γt − γ̃s + 8γv + 16γv
γ̃s − γv
1 + γv

]

, (58)

dγt
dξ

=
1 + γt
πσxx

[

1− γ̃s + 2γt + 8γv
γt − γv
1 + γv

]

, (59)

dγv
dξ

=
1

πσxx

[

1 + γ̃s + γv − γv(6γt + γ̃s) + 8γ2v

]

, (60)

d ln z

dξ
=

1

πσxx

[

γ̃s + 6γt + 8γv − 1
]

. (61)

Here f(x) = 1 − (1 + x−1) ln(1 + x), ξ = lnL/l and we
omit primes for a brevity. Equations (57)-(60) constitute
one of the main results of the present paper and describe
the system at the length scales L≪

√

σxx/(zab∆ab).
It is worthwhile to mention that the right hand side of

Eqs. (58) and (59) is not polynomial in the interaction
amplitude γv. To the best of our knowledge, the one-loop
RG equations for interaction amplitudes are quadratic
polynomials in all cases studied previously.5,13,14,18,38

This fact is deeply related with invariance of the action
Sσ + SF under the global rotation of the matrix Q with
the matrix exp(iχ̂) (see Sec. II D 1). As it follows from
Eqs. (36), Sσ + SF is invariant under such global rota-
tion with χab = χδacδbd where c = 0, 1 and d = 1, 2 or
3 provided γt = −1. The same holds for the global ro-
tation with χab = χδa1δb0 if γ̃s = −1. This invariance
guarantees that γt = −1 and γ̃s = −1 are fixed points of
the RG equations. Therefore, the latter have to be well-
defined at γt = −1 and γ̃s = −1. However, for γv = −1
the action Sσ + SF is not invariant under the global ro-
tation of the matrix Q with χab = χδacδbd with c = 1, 2
and d = 0, 1, 2 or 3. It is exactly this noninvariance
that allows appearance of factors 1/(1 + γv) (diverging
at γv = −1) in Eqs. (58) and (59).
The renormalization group equations (57)-(60) pos-

sess a rich four-dimensional (σxx, γ̃s, γt, γv) flow dia-
gram. First of all, there is the two-dimensional sur-
face γt = γv = γ̃s which is conserved under RG flow.
It corresponds to the case of coinciding quantum wells
(d = 0). In this case, the RG equations (57)-(61) are
completely equivalent to ones for the two-valley electron
liquid. However, this two-dimensional surface is unsta-
ble: a small initial mismatch (e.g., due to finite d) in the
condition γt = γv = γ̃s increases during RG flow. Sec-
ondly, the RG flow conserves the two-dimensional surface
γv = 0, γ̃s = −1 which is stable. It describes the limit of
two separate quantum wells (d = ∞). In addition, there
are some interesting features of RG flow. For example,
there is a two-dimensional surface γt = γ̃s = −1 which is
conserved by RG flow. There is an accidental fixed line
γ̃s = −1, γv = −1/2, γt = −1/3. However, these features
are not accessible in the double quantum well structure.
Indeed, the initial values of the parameters γt, γv and
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FIG. 3: Dependence of the parameters γt, γv, γ̃s on ξ. Initial
values are γ̄t = 0.35, γ̄v = 0.01, ¯̃γs = −0.77, and σ̄xx = 6.

γ̃s satisfy

γ̄t > γ̄v > 0, γ̄t > ¯̃γs. (62)

Then, using Eq. (58)-(60) one can prove that under RG
flow i) the conditions γt > γv > 0 and γt > γ̃s hold; ii)
γt always increases. Starting from initial values of the
parameters γt, γv and γ̃s satisfying Eq. (62) the RG flow
develops in such a way that γv vanishes, γ̃s tends to −1
and γt increases towards infinity as shown in Fig. 3.
The conductance σxx demonstrates metallic behavior

as in the case of two-valley electron liquid. It increases at
large length scales. Depending on the sign of the parame-
terKee = 1+f(¯̃γs)+6f(γ̄t)+8f(γ̄v), the conductance can
develop both monotonic (Kee < 0) and non-monotonic
behavior (Kee > 0) (see Fig. 4). The phase diagram for
the parameter Kee is shown in Fig. 5. At κ/kF . 0.4
the parameter Kee is positive for all values of κd. With
increasing κ/kF a domain of negative values of Kee de-
velops at small values of κd.
The conductance σ′

xx defined in Eq. (37) and renormal-
ized in accordance with Eq. (57) is the total conductance
of double quantum well structure. In general, one can
write σ′

xx = σ′
11 + σ′

22 + σ′
12 + σ′

21, where σ
′
11 and σ′

22

are the intrawell conductances of left and right quantum
wells respectively, and σ′

12 and σ′
21 denote the transcon-

ductances responsible for a drag effect. At the balance,
symmetry yields that σ′

11 = σ′
22 and σ′

12 = σ′
21.

Although in experiments of Refs. [31,32] only the
total conductivity σ′

xx has been measured, such dou-
ble quantum well heterostructures with correlated dis-
order at the balance allow for experimental study of
transconductance contrary to the two-valley electron sys-
tem in Si-MOSFET. It was shown36 that in the presence
of electron-electron interaction one-loop contribution in
the particle-hole channel (only “diffusons”) to the DC
transconductance σ′

12 vanishes. As a result, the one-loop
contribution to the DC transconductance is entirely de-
termined by the particle-particle channel (“Cooperons”).
However, in Ref. [36] only the interwell interactions (U scr

12 )
were taken into account. As shown in Appendix B, an
accurate treatment of both interwell (U scr

12 ) and intrawell

(U scr
11 ) interactions (i.e. taking into account all interac-

tion couplings Γs, Γ̃s, Γt, and Γv) does not change the
conclusion of Ref. [36]: the particle-hole (“diffuson”) con-
tribution to the DC transconductance σ′

12 vanishes in the
one-loop approximation.

IV. DEPHASING RATE

The presence of the right well changes the properties of
electrons in the left well. One of the important quantities
characterizing interacting electrons in a random potential
is the dephasing rate. Its dependence on temperature de-
termines the behavior of the weak-localization correction
to the conductance. In this section, we investigate how
the presence of the right well changes the dephasing rate
of electrons in the left well compared to the case when
the right well is empty.

A. Contribution from the interaction in the singlet

channel

We start from the case of the interaction in the singlet
channel only. According to Eq. (21), electrons in the
right well screen interaction between electrons in the left
well and vice versa. The dephasing rate of electrons in
the left well due to the presence of electrons in the right
well can be found from the following expression which
generalizes standard on:33,51

1

τϕ
= −

∫

τ−1
ϕ

dω

π

∫

d2q

(2π)2
ImU scr

11 (q, ω)

sinh (ω/T )

D1q
2

D2
1q

4 + ω2
.

(63)
Expression for the dephasing rate of electrons in the right
well can be obtained from Eq. (63) by substitution of
U22 and D2 for U11 and D1, respectively. At the balance
which we are interested in, the dephasing rates in the
left and right wells are the same. Under the following
assumption d,κ−1 ≪ LT =

√

D/T , we find

1

τϕ
= As

T

8πνD
lnTτϕ (64)

where As is the function of the parameter κd:

As =
1

2

[

1 +
(κd)2

(1 + κd)(2 + κd)

]

. (65)

We mention that in the absence of electrons in the right
well (formally this case corresponds to the limit d→ ∞)
the dephasing rate is maximal: As = 1. Equation (65)
was used for analysis of the experimental data in Ref. [31].

B. Contribution from the interaction in the

multiplet channels

In general case, one has to take into account contribu-
tions to the dephasing rate from the interaction in mul-
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Kee is negative in the filled region below the solid (blue) curve

and is positive above. Dashed (red) line indicates F̃s = 0.

tiplet channels.34 We restrict ourselves to the case of the
balance. Generalizing the well-known result33 for the sin-
gle well we can write the dephasing rate in the left well
as

1

τϕ
= − 2

σxx

∫

τ−1

ϕ

dω

∫

d2q

(2π)2
ReDR

q (ω)

sinh (ω/T )

∑

ab

Im U (ab)(q, ω)

(66)

where

U (ab)(q, ω) =
Γab
z
D(ab),R
q (ω)[DR

q (ω)]
−1. (67)

Performing integration over momentum and frequency,
we find

1

τϕ
= A T

2σxx
lnTτϕ (68)

with

A =
1

2

[

1 +
γ̃2s

2 + γ̃s
+ 6

γ2t
2 + γt

+ 8
γ2v

2 + γv

]

. (69)

In the absence of interaction in the multiplet channels,
i.e., for Ft = Fv = 0 and γ̃s = −κd/(1 + κd), this result
transforms into Eq. (64). We mention that the interac-
tion parameters γ̃s, γt and γv as well as conductance σxx
should be taken at the length scale LT =

√

σxx/zT .
It is worthwhile to compare Eq. (68) with the result for

the dephasing rate in the absence of electrons in the right
well.33 Taking the limit d → ∞, i.e., setting γ̃s = −1,
γv = 0, and γt = γt,0, we obtain

A → A0 =

[

1 +
3γ2t,0

2 + γt,0

]

(70)

where initial value of γt,0 is γ̄t,0 = −F 0
t /(1 + F 0

t ).

V. COMPARISON WITH THE EXPERIMENT

Recently, the interference31 and interaction32 correc-
tions to the conductivity of the gated double quan-
tum well AlxGa1−xAs/GaAs/AlxGa1−xAs heterostruc-
tures have been studied. Two heterostructures, 3243
and 3154, distinguishing by the doping level have been
investigated. From analysis of positive magnetoconduc-
tivity the dephasing rate has been extracted. By tuning
the gate voltage, the electron concentration in the right
quantum well were controlled in the experiment.
We consider two characteristic cases: I) electron con-

centrations and mobilities (M) of both quantum wells
are equal: n1 = n2 = n and M1 = M2 = M; II) the left
quantum well has electron concentration n1 = n and mo-
bility M1 = M whereas the right quantum well has elec-
tron concentration n2 = 0. The electron concentration n
has been high such that the conductance σ̄xx was about
80. Therefore, physics described by RG equations (57)-
(61) was not observed. The main unexpected findings of
Refs. [31,32] were as follows. Dephasing rates (coefficient
A) and interaction correction (parameter Kee) extracted
in cases I) and II) were practically the same. At first
glance, it is counterintuitive since there are 15 multiplets
in the case I) and only 3 in the case II).
After Refs. [31,32] we summarize the experimental val-

ues of relevant parameters in Table I. The theoretical
estimates for the interaction parameters in cases I) and
II) are presented in Table II. As one can see, in the
experimentally studied case of κd = 3.6 the interaction
parameter Fv is negligible, Ft and F

0
t coincide with each

other and F̃s is equal approximately to κd. The compar-
ison between theoretical estimates for Kee, A, Kee,0 and
A0 with experimental data (whereever it is possible) is
summarized in Table III. Our theoretical estimates are
in good quantitative agreement with the experimental
ones. Our results explain why the interaction corrections
and dephasing rates in cases I) and II) were found to be
practically the same in the experiments.31,32 Since the
parameter Kee,0 is positive for κ/kF . 1 a drastic effect
in the interaction correction could be seen by tuning the
gate voltage from case I) to case II) in double quantum
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TABLE I: Parameters for samples studied in Refs. [31,32]

sample #3154 #3243

n, 1011 cm−2 4.5 7.5

kF , 10
6 cm−1 1.7 2.2

κ, 106 cm−1 2 2

d, 10−6 cm 1.8 1.8

κd 3.6 3.6

kF d 3.06 3.95

κ/kF 1.18 0.91

TABLE II: Theoretical estimates of interaction parameters.

sample #3154 #3243

F̃s 3.34 3.37

Ft −0.26 −0.23

Fv −0.009 −0.007
¯̃γs −0.77 −0.77

γ̄t 0.35 0.30

γ̄v 0.009 0.007

F 0

t −0.26 −0.23

γ̄t,0 0.35 0.30

well structures with κd . 1 for which one can expect
Kee < 0 (see Fig. 5).
As mentioned in the Introduction, our theory is valid

at temperatures T ≫ ∆SAS ,∆s, 1/τ+−. In the experi-
ments of Refs. [31,32] the Zeeman splitting (at relevant
magnetic field which was used in order to extract interac-
tion correction) and ∆SAS were estimated as ∆s . 0.2K
and ∆SAS . 1K. A small asymmetry in the impurity
distribution along z axis presented in the double quan-
tum well heterostructures used in Refs. [31,32] leads to
appearance of scattering rate between symmetric and an-
tisymmetric states. The corresponding scattering rate
(1/τ+−) can be estimated from temperature and mag-
netic field dependence of weak-localization (interference)
correction to conductivity.

TABLE III: Comparison of theoretical estimates and exper-
imental findings [Kee,0 = 1 + 3f(γ̄t,0), Kee = 1 + f(¯̃γs) +
6f(γ̄t) + 8f(γ̄v)].

Theory Experiment

#3154 #3243 #3154 #3243

Kee 0.59 0.72 0.50± 0.05 0.57 ± 0.05

Kee,0 0.52 0.59 0.53± 0.05 0.60 ± 0.05

A 0.89 0.86

A0 1.15 1.12

A/A0 0.77 0.77 1.00± 0.05 1.00 ± 0.05

As known,33,42,43 in the absence of scattering be-
tween symmetric and antisymmetric states neither ∆s

nor ∆SAS does not influence the weak-localization con-
tribution. In the absence of magnetic field, the weak lo-
calization correction to the conductance in both asymp-
totic cases ∆SAS ≪ 1/τ+− and ∆SAS ≫ 1/τ+− can be
written as

δσWL
xx =

1

π
ln
[τ2tr
τϕ

( 1

τϕ
+

1

τ12

)]

(71)

where 1/τ12 ∼ min{∆2
SASτ+−, 1/τ+−}. The tempera-

ture dependence of the weak-localization correction (71)
smoothly interpolates between the result known for a
two-valley system at high temperatures (1/τϕ ≫ 1/τ12)
and the single-valley result at low temperatures (1/τϕ ≪
1/τ12). In experiments [31] the characteristic time τ12
was estimated from the suppression of weak-localization
correction due to perpendicular magnetic field as 1/τ12 .
0.1K. Together with the estimate ∆SAS . 1K it implies
that 1/τ+− ∼ 1/τ12 . 0.1K. Therefore our theory is ap-
plicable at temperatures T & 1K. It is this temperature
range that was studied experimentally in Refs. [31,32].

VI. CONCLUSIONS

To summarize, we have developed the theory of the
disordered electron liquid in a double well quantum het-
erostructure with equal electron concentrations. We have
identified all relevant interaction parameters and found
their dependence on the distance between quantum wells.
To describe the system at low temperatures, we have de-
rived the interacting non-linear sigma model and studied
it renormalization in the one-loop approximation. We
have obtained the renormalization group equations de-
scribing the length scale dependence of the conductance
and interaction parameters. We have found that upon
the renormalization the system flows towards the fixed
point corresponding to two separate quatum wells. The
RG equations predict the metallic behavior of the con-
ductance. We have evaluated the dephasing rate of elec-
trons due to the presence of electron-electron interaction.
This expression takes into account screening of electron-
electron interaction within one quantum well by electrons
from the other quantum well.
We did not consider contributions to the one-loop RG

equations from the particle-particle (“Cooper”) chan-
nel. The interaction effects related to the Cooper chan-
nel are governed by the corresponding interaction am-
plitude which is always small for 2D electron systems
with Coulomb repulsion, so that one can neglect it.5

As for the interference contribution to conductance, for
1/τϕ ≫ 1/τ12, it can be taken into account by the sub-
stitution of 1+2 for 1 in the square brackets of Eq. (57).
This does not change qualitative behavior of the interac-
tion amplitudes γ̃s, γt and γv discussed above. However,
the interference contribution makes behavior of the con-
ductance always non-monotonous.
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We performed detailed comparison between our theory
and experimental data.31,32 We explained main experi-
mental results and found good quantitative agreement. It
would be an experimental challenge to construct the dou-
ble quantum well heterostructure with κd . 1. Then, ac-
cording to our predictions, one can expect a change from
non-monotonous to monotonous behavior in conductance
in the presence of small perpendicular magnetic field (to
suppress interference contribution) when the right well is
depopulated by tuning the gate voltage. It would be also
interesting to experimentally study the Coulomb drag ef-
fect in such heterostructures with correlated disorder.
Finally it would be worthwhile to extend our analysis

to temperatures less than the symmetry breaking energy
scales ∆SAS , ∆s and 1/τ+−. At such low temperatures
one may expect different behavior of transport in dou-
ble quantum well structures as compared to two-valley
electron systems studied recently.13,14,18
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Appendix A: Background field renormalization of

the Finkelstein term SF

In this appendix we present details of the derivation
of Eq. (55) with the help of the background field renor-
malization. Let us separate the matrix field Q into the
“fast” (Q) and “slow” (Q0 = T−1

0 ΛT0) modes as

Q→ T−1
0 QT0. (A1)

The effective action for the Q0 fields is given by

expSeff [Q0] =

∫

D[Q] expS[T−1
0 QT0] (A2)

Since we are interesting in the renormalization of the
interaction parameters Γab only, we insert the spatial in-
dependent background field T0 in the action (32). The

result can be written as follows

SF [T−1
0 QT0] = SF [Q0] + SF [Q] +O

(1),1
t +O

(1),2
t

+O
(2),1
t +O

(2),2
t +Qη, (A3)

where

O
(1),1
t = −πT

2

∫

dr
∑

αn;ab

Γab tr I
α
n tabδQ tr Iα−ntabQ0,

O
(1),2
t = −πT

2

∫

dr
∑

αn;ab

Γab tr I
α
n tabδQ trAα−n;abδQ,

O
(2),1
t = −πT

2

∫

dr
∑

αn;ab

Γab tr I
α
n tabQ0 trA

α
−n;abδQ,

O
(2),2
t = −πT

4

∫

dr
∑

αn;ab

Γab trA
α
n;abδQ trAα−n;abδQ,

Oη = 4πTz

∫

dr trAηδQ. (A4)

Here we introduce δQ = Q− Λ and

Aη = T0[η, T
−1
0 ], Aαn;ab = T0[I

α
n tab, T

−1
0 ]. (A5)

The effective action Seff [Q0] can be obtained by expan-
sion of S[T−1

0 QT0] to the second order in Aη and Aαn;ab.
8

Then, we find

Seff [Q0]− SF [Q0] = 〈O(2),1
t 〉+ 〈O(2),2

t 〉+ 1

2
〈
[

O
(1),1
t

]2〉

+
1

2
〈O(1),1

t O
(1),2
t 〉+ 1

2
〈
[

O
(1),2
t

]2〉+ 〈Oη〉, (A6)

where the average 〈. . . 〉 is with respect to action (31)-
(32) and we omit terms which do not involve infrared
divergencies. In general, each term in the right hand
side of Eq. (A6) produce contributions which cannot be
expressed in terms of Q0 only. However, all such contri-
butions cancel in the total expression (A6). Therefore,
we will not list them below. Expanding δQ in series of
W according to Eq. (40) and performing averaging with
the help of Eq. (41), we obtain

Seff [Q0] = −πT
4

∫

dr
∑

αn;ab

Γ′
ab tr I

α
n tabQ tr Iα−ntabQ

+4πTz′
∫

dr tr ηQ (A7)

where

Γ′
ab = Γab + δΓ

(2),1
ab + δΓ

(2),2
ab + δΓ

(1),1;1
ab + δΓ

(1),1;2
ab

+δΓ
(1),2;2
ab + δΓηab (A8)

and similar for z′. Here the contributions to Γ′
ab from

each term in the right hand side of Eq. (A6) are given as
follows

〈O(2),1
t 〉 → δΓ

(2),1
ab =

32πT

σ2
xx

∑

cd;ef

[

Cabcd;ef
]2
ΓcdΓef

×
∫

d2p

(2π)2

∑

ωm>0

DD(cd)
p (ωm), (A9)
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〈O(2),2
t 〉 → δΓ

(2),2
ab = − 1

8σxx

∑

cd;ef

[

sp(tcdtef tab)
]2
Γcd

×
∫

d2p

(2π)2
Dp(0), (A10)

1

2
〈
[

O
(1),1
t

]2〉 → δΓ
(1),1;1
ab =

32πT

σ2
xx

∑

cd;ef

[

ΓabCabcd;ef
]2 ∑

ωm>0

×
∫

d2p

(2π)2
[

D(cd)D(ef)
p (ωm)−D2

p(ωm)
]

, (A11)

〈O(1),1
t O

(1),2
t 〉 → δΓ

(1),1;2
ab = −64πT

σ2
xx

∑

cd;ef

[

Cabcd;ef
]2
ΓabΓcd

×
∫

d2p

(2π)2

∑

ωm>0

D(ab)D(ef)
p (ωm), (A12)

1

2
〈
[

O
(1),2
t

]2〉 → δΓ
(1),2;2
ab =

32πT

σ2
xx

∑

cd;ef

[

ΓefCabcd;ef
]2 ∑

ωm>0

×
∫

d2p

(2π)2
[

D(cd)D(ef)
p (ωm)−DD(cd)

p (ωm)
]

, (A13)

and

〈Oη〉 → δΓηab = 0. (A14)

Combing contributions (A8)-(A14) we obtain Eq. (55).
The only non-zero contributions to renormalization of

z are

1

2
〈
[

O
(1),2
t

]2〉 → δz(1),2;2 =
64πT

σ2
xx

∑

cd

Γcd
∑

ωm>0

×
∫

d2p

(2π)2
[

DDp(ωm)−D(cd)D(cd)
p (ωm)

]

(A15)

and

〈Oη〉 → δzη = −64πT

σ2
xx

∑

cd

Γcd

∫

d2p

(2π)2

×
∑

ωm>0

DD(cd)
p (ωm). (A16)

In total, Eqs. (A15) and (A16) give

z′ = z +
64πT

σ2
xx

∑

cd

Γcd

∫

d2p

(2π)2

∑

ωm>0

D2
p(ωm). (A17)

It coincides with Eq. (51).

Appendix B: Evaluation of DC transconductance σ′

12

In this appendix we present calculations of the DC
transconductance in the one-loop approximation. Simi-
larly to the total conductance, the transconductance can

be obtained from

σ′
12(iωn) = −σxx

16n

〈

tr[Iαn t−, Q][Iα−nt+, Q]
〉

+
σ2
xx

128n

∫

dr′

×〈〈tr Iαn t−Q(r)∇Q(r) tr Iα−nt+Q(r′)∇Q(r′)〉〉 (B1)

after the analytic continuation to the real frequencies:
iωn → ω + i0+ at ω → 0. Here matrices t± = (t00 ±
t30)/2. Evaluation of the transconductance according to
Eq. (B1) in the one-loop approximation yields

σ′
12(iωn) =

32πT

σxxωn

∑

ab

Γab sp
[

t−tabt+tab − t−t+
]

∑

ωm>0

×ωm
∫

d2p

(2π)2
DD(ab)

p (ωm+n)

− 8πT

σxxωn

∫

d2p

(2π)2
p2

∑

ab;cd

sp
[

t−tabtcd
]

∑

ωm>0

×
{

sp
(

t+[tab, tcd]
)

ωm

[

ΓabDp(ωm+n)DD
(ab)
p (ωm)

+ΓcdD
(ab)
p (ωm)DD(cd)

p (ωm+n)
]

− sp
[

t+tabtcd
]

×Γabmin{ωm, ωn}Dp(ωm+n)DD
(ab)
p (ωm)

}

, (B2)

where DD
(ab)
p (ωm) ≡ Dp(ωm)D

(ab)
p (ωm). Evaluating the

traces we find

σ′
12(iωn) =

29πTΓv
σxxωn

∫

d2p

(2π)2

∑

ωm>0

{

ωm

[

DD(20)
p (ωm+n)

−p2
(

Dp(ωm) +D(20)
p (ωm+n)

)

Dp(ωm+n)D
(20)
p (ωm)

]

+min{ωm, ωn}p2Dp(ωm+n)DD
(20)
p (ωm)

}

. (B3)

Performing the analytic continuation to the real frequen-
cies, iωn → ω + i0+, one obtains the DC transconduc-
tance in the one-loop approximation:

σ′
12 = −27Γv

σxx
Im

∫

d2p

(2π)2

∫

dΩ

{

∂

∂Ω

(

Ωcoth
Ω

2T

)

×
[

DD(20),R
p (Ω)− p2D2D(20),R

p (Ω)
]

+ p2Ωcoth
Ω

2T

×D(20),R
p (Ω)

∂

∂Ω

[1

2
D2
p(Ω) +DD(20),R

p (Ω)
]

}

, (B4)

where DD
(ab),R
p (Ω) ≡ DR

p (Ω)D
(ab),R
p (Ω). Next, Eq. (B4)

can be simplified as

σ′
12 =

211Γv
σ2
xx

Re

∫

dΩΩcoth
Ω

2T

×
∫

d2p

(2π)2
p2DD(20),R

p (Ω)

×
{

z
[

DR
p (Ω)

]2

− (z + Γv)
[

D(20),R
p (Ω)

]2
}

(B5)
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One can check that due to integration over momentum p
the DC transconductance vanishes at arbitrary temper-

ature, σ′
12 = 0.
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