72 research outputs found
Promoting Cognitive Conflict in Health Care Ethics: Moral Reasoning with Boundary Cases
As many college students are at a time of tremendous personal and academic growth, introductory philosophy courses have the potential to equip students with practical critical reasoning skills. Despite this, many introductory courses in this domain emphasize students’ learning about pre-existing dialectics in the abstract, rather than over self-reflection and development of personal philosophical perspectives. In doing so, we may be failing to support the needs of pre-professional students looking to prepare themselves for their careers ahead. In this practitioner paper, we report our efforts as a practicing philosophy instructor (Bursten) and a learning scientist (Finkelstein) to iterate on the design of a student-centered instrument for moral reasoning in medical contexts within an introductory Health Care Ethics course. We identified the positive role that providing boundary cases played in helping students’ experience productive cognitive conflict, and, in turn, how these experiences improved critical self-reflection and moral reasoning
Investigating the Impact of Designing and Implementing Culturally Aligned Technological Systems on Educators' Ideologies
Abstract. Culturally sensitive educational technologies may be able to help improve underrepresented students' learning and engagement when they are deployed in the classroom. However, there may be challenges integrating these systems into the classroom when the cultural components they incorporate are heavily stigmatized in contemporary society. In this on-going work, we are using an action research approach to investigate how involving teachers in the design of these technologies may not only affect the effectiveness of these interventions on students, but also teachers' own ideologies surrounding the targeted stigmatized cultural components
Corrigendum: Acceptability of Iron- and Zinc-Biofortified Pearl Millet (ICTP-8203)-Based Complementary Foods among Children in an Urban Slum of Mumbai, India
Biofortification, a method for increasing micronutrient content of staple crops, is a promising strategy for combating major global health problems, such as iron and zinc deficiency. We examined the acceptability of recipes prepared using iron- and zinc-biofortified pearl millet (FeZnPM) (~80 ppm Fe, ~34 ppm Zn, varietal ICTP-8203), compared to conventional pearl millet (CPM) (~20 ppm Fe, ~19 ppm Zn) in preparation for an efficacy trial. Our objective was to examine the acceptability of FeZnPM compared to CPM among young children and mothers living in the urban slums of Mumbai. Standardized traditional feeding program recipes (n = 18) were prepared with either FeZnPM or CPM flour. The weight (g) of each food product was measured before and after consumption by children (n = 125) and the average grams consumed over a 3-day period were recorded. Mothers (n = 60) rated recipes using a 9-point hedonic scale. Mean intakes and hedonic scores of each food product were compared using t-tests across the two types of pearl millet. There were no statistically significant differences in consumption by children (FeZnPM: 25.27 ± 13.0 g; CPM: 21.72 ± 6.90 g) across the food products (P = 0.28). Overall mean hedonic scores for all recipes were between 7 to 9 points. CPM products were rated higher overall (8.22 ± 0.28) compared to FeZnPM products (7.95 ± 0.35) (P = 0.01). FeZnPM and CPM were similarly consumed and had high hedonic scores, demonstrating high acceptability in this population. These results support using these varieties of pearl millet in a proposed trial [http://Clinicaltrials.gov ID: NCT02233764; Clinical Trials Registry of India (CTRI), reference number REF/2014/10/007731, CTRI number CTRI/2015/11/006376] testing the efficacy of FeZnPM for improving iron status and growth
Phylogenomic Analysis of Salmonella enterica subsp. enterica Serovar Bovismorbificans from Clinical and Food Samples Using Whole Genome Wide Core Genes and kmer Binning Methods to Identify Two Distinct Polyphyletic Genome Pathotypes
Salmonella enterica subsp. enterica serovar Bovismorbificans has caused multiple outbreaks involving the consumption of produce, hummus, and processed meat products worldwide. To elucidate the intra-serovar genomic structure of S. Bovismorbificans, a core-genome analysis with 2690 loci (based on 150 complete genomes representing Salmonella enterica serovars developed as part of this study) and a k-mer-binning based strategy were carried out on 95 whole genome sequencing (WGS) assemblies from Swiss, Canadian, and USA collections of S. Bovismorbificans strains from foodborne infections. Data mining of a digital DNA tiling array of legacy SARA and SARB strains was conducted to identify near-neighbors of S. Bovismorbificans. The core genome analysis and the k-mer-binning methods identified two polyphyletic clusters, each with emerging evolutionary properties. Four STs (2640, 142, 1499, and 377), which constituted the majority of the publicly available WGS datasets from >260 strains analyzed by k-mer-binning based strategy, contained a conserved core genome backbone with a different evolutionary lineage as compared to strains comprising the other cluster (ST150). In addition, the assortment of genotypic features contributing to pathogenesis and persistence, such as antimicrobial resistance, prophage, plasmid, and virulence factor genes, were assessed to understand the emerging characteristics of this serovar that are relevant clinically and for food safety concerns. The phylogenomic profiling of polyphyletic S. Bovismorbificans in this study corresponds to intra-serovar variations observed in S. Napoli and S. Newport serovars using similar high-resolution genomic profiling approaches and contributes to the understanding of the evolution and sequence divergence of foodborne Salmonellae. These intra-serovar differences may have to be thoroughly understood for the accurate classification of foodborne Salmonella strains needed for the uniform development of future food safety mitigation strategies
Characterization of Cronobacter sakazakii Strains Originating from Plant-Origin Foods Using Comparative Genomic Analyses and Zebrafish Infectivity Studies
Cronobacter sakazakii continues to be isolated from ready-to-eat fresh and frozen produce, flours, dairy powders, cereals, nuts, and spices, in addition to the conventional sources of powdered infant formulae (PIF) and PIF production environments. To understand the sequence diversity, phylogenetic relationship, and virulence of C. sakazakii originating from plant-origin foods, comparative molecular and genomic analyses, and zebrafish infection (ZI) studies were applied to 88 strains. Whole genome sequences of the strains were generated for detailed bioinformatic analysis. PCR analysis showed that all strains possessed a pESA3-like virulence plasmid similar to reference C. sakazakii clinical strain BAA-894. Core genome analysis confirmed a shared genomic backbone with other C. sakazakii strains from food, clinical and environmental strains. Emerging nucleotide diversity in these plant-origin strains was highlighted using single nucleotide polymorphic alleles in 2000 core genes. DNA hybridization analyses using a pan-genomic microarray showed that these strains clustered according to sequence types (STs) identified by multi-locus sequence typing (MLST). PHASTER analysis identified 185 intact prophage gene clusters encompassing 22 different prophages, including three intact Cronobacter prophages: ENT47670, ENT39118, and phiES15. AMRFinderPlus analysis identified the CSA family class C β-lactamase gene in all strains and a plasmid-borne mcr-9.1 gene was identified in three strains. ZI studies showed that some plant-origin C. sakazakii display virulence comparable to clinical strains. Finding virulent plant-origin C. sakazakii possessing significant genomic features of clinically relevant STs suggests that these foods can serve as potential transmission vehicles and supports widening the scope of continued surveillance for this important foodborne pathogen
Comparative Genomic Characterization of the Highly Persistent and Potentially Virulent Cronobacter sakazakii ST83, CC65 Strain H322 and Other ST83 Strains
Cronobacter (C.) sakazakii is an opportunistic pathogen and has been associated with serious infections with high mortality rates predominantly in pre-term, low-birth weight and/or immune compromised neonates and infants. Infections have been epidemiologically linked to consumption of intrinsically and extrinsically contaminated lots of reconstituted powdered infant formula (PIF), thus contamination of such products is a challenging task for the PIF producing industry. We present the draft genome of C. sakazakii H322, a highly persistent sequence type (ST) 83, clonal complex (CC) 65, serotype O:7 strain obtained from a batch of non-released contaminated PIF product. The presence of this strain in the production environment was traced back more than 4 years. Whole genome sequencing (WGS) of this strain together with four more ST83 strains (PIF production environment-associated) confirmed a high degree of sequence homology among four of the five strains. Phylogenetic analysis using microarray (MA) and WGS data showed that the ST83 strains were highly phylogenetically related and MA showed that between 5 and 38 genes differed from one another in these strains. All strains possessed the pESA3-like virulence plasmid and one strain possessed a pESA2-like plasmid. In addition, a pCS1-like plasmid was also found. In order to assess the potential in vivo pathogenicity of the ST83 strains, each strain was subjected to infection studies using the recently developed zebrafish embryo model. Our results showed a high (90–100%) zebrafish mortality rate for all of these strains, suggesting a high risk for infections and illness in neonates potentially exposed to PIF contaminated with ST83 C. sakazakii strains. In summary, virulent ST83, CC65, serotype CsakO:7 strains, though rarely found intrinsically in PIF, can persist within a PIF manufacturing facility for years and potentially pose significant quality assurance challenges to the PIF manufacturing industry
"I don't eat a hamburger and large chips every day!" A qualitative study of the impact of public health messages about obesity on obese adults
BackgroundWe are a society that is fixated on the health consequences of \u27being fat\u27. Public health agencies play an important role in \u27alerting\u27 people about the risks that obesity poses both to individuals and to the broader society. Quantitative studies suggest people comprehend the physical health risks involved but underestimate their own risk because they do not recognise that they are obese.MethodsThis qualitative study seeks to expand on existing research by exploring obese individuals\u27 perceptions of public health messages about risk, how they apply these messages to themselves and how their personal and social contexts and experiences may influence these perceptions. The study uses in depth interviews with a community sample of 142 obese individuals. A constant comparative method was employed to analyse the data.ResultsPersonal and contextual factors influenced the ways in which individuals interpreted and applied public health messages, including their own health and wellbeing and perceptions of stigma. Individuals felt that messages were overly focused on the physical rather than emotional health consequences of obesity. Many described feeling stigmatised and blamed by the simplicity of messages and the lack of realistic solutions. Participants described the need for messages that convey the risks associated with obesity while minimising possible stigmatisation of obese individuals. This included ensuring that messages recognise the complexity of obesity and focus on encouraging healthy behaviours for individuals of all sizes.ConclusionThis study is the first step in exploring the ways in which we understand how public health messages about obesity resonate with obese individuals in Australia. However, much more research - both qualitative and quantitative - is needed to enhance understanding of the impact of obesity messages on individuals
The Physical Conditions of Emission-Line Galaxies at Cosmic Dawn from JWST/NIRSpec Spectroscopy in the SMACS 0723 Early Release Observations
We present rest-frame optical emission-line flux ratio measurements for five
galaxies observed by the JWST Near-Infared Spectrograph (NIRSpec) in the
SMACS 0723 Early Release Observations. We add several quality-control and
post-processing steps to the NIRSpec pipeline reduction products in order to
ensure reliable relative flux calibration of emission lines that are closely
separated in wavelength, despite the uncertain \textit{absolute}
spectrophotometry of the current version of the reductions. Compared to
galaxies in the literature, the galaxies have similar
[OIII]5008/H ratios, similar [OIII]4364/H
ratios, and higher (0.5 dex) [NeIII]3870/[OII]3728
ratios. We compare the observations to MAPPINGS V photoionization models and
find that the measured [NeIII]3870/[OII]3728,
[OIII]4364/H, and [OIII]5008/H emission-line
ratios are consistent with an interstellar medium that has very high ionization
(, units of cm~s), low metallicity (), and very high pressure (, units of
cm). The combination of [OIII]4364/H and
[OIII](4960+5008)/H line ratios indicate very high electron
temperatures of , further implying metallicities of
with the application of low-redshift calibrations for
``-based'' metallicities. These observations represent a tantalizing new
view of the physical conditions of the interstellar medium in galaxies at
cosmic dawn.Comment: Accepted for publication in AAS Journals. 14 pages, 6 figures, 3
table
AI is a viable alternative to high throughput screening: a 318-target study
: High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
Stylized Keyframe Animation of Fluid Simulations
An upward-flowing jet of ink rendered in oil pastel. An underlying simulation is used as input to guide the artwork (frame 45 is shown). Frames 50, 60 and 70 are hand-drawn keyframes, while the remaining in-betweens were generated automatically by our system. We present a method that combines hand-drawn artwork with fluid simulations to produce animated fluids in the visual style of the artwork. Given a fluid simulation and a set of keyframes rendered by the artist in any medium, our system produces a set of in-betweens that visually matches the style of the keyframes and roughly follows the motion from the underlying simulation. Our method leverages recent advances in patch-based regenerative morphing and image melding to produce temporally coherent sequences with visual fidelity to the target medium. Because direct application of these methods results in motion that is generally not fluid-like, we adapt them to produce motion closely matching that of the underlying simulation. The resulting animation is visually and temporally coherent, stylistically consistent with the given keyframes, and approximately matches the motion from the simulation. We demonstrate the method with animations in a variety of visual styles.
- …