5,503 research outputs found

    General solution of equations of motion for a classical particle in 9-dimensional Finslerian space

    Full text link
    A Lagrangian description of a classical particle in a 9-dimensional flat Finslerian space with a cubic metric function is constructed. The general solution of equations of motion for such a particle is obtained. The Galilean law of inertia for the Finslerian space is confirmed.Comment: 10 pages, LaTeX-2e, no figures; added 2 reference

    Representations of U(1,q) and Constructive Quaternion Tensor Products

    Full text link
    The representation theory of the group U(1,q) is discussed in detail because of its possible application in a quaternion version of the Salam-Weinberg theory. As a consequence, from purely group theoretical arguments we demonstrate that the eigenvalues must be right-eigenvalues and that the only consistent scalar products are the complex ones. We also define an explicit quaternion tensor product which leads to a set of additional group representations for integer ``spin''.Comment: 28 pages, Latex, Dipartimento di Fisica, Universita di Lecce INFN-Sezione di Lecc

    Renormalization of hole-hole interaction at decreasing Drude conductivity

    Full text link
    The diffusion contribution of the hole-hole interaction to the conductivity is analyzed in gated GaAs/Inx_xGa1x_{1-x}As/GaAs heterostructures. We show that the change of the interaction correction to the conductivity with the decreasing Drude conductivity results both from the compensation of the singlet and triplet channels and from the arising prefactor αi<1\alpha_i<1 in the conventional expression for the interaction correction.Comment: 6 pages, 5 figure

    Disordered electron liquid in double quantum well heterostructures: Renormalization group analysis and dephasing rate

    Get PDF
    We report a detailed study of the influence of the electron-electron interaction on physical observables (conductance, etc.) of a disordered electron liquid in double quantum well heterostructure. We find that even in the case of common elastic scattering off electrons in both quantum wells, the asymmetry in the electron-electron interaction across and within quantum wells decouples them at low temperatures. Our results are in quantitative agreement with recent transport experiments on the gated double quantum well Alx_xGa1x_{1-x}As/GaAs/Alx_xGa1x_{1-x}As heterostructures.Comment: 15 pages; 5 figure

    Imaging density disturbances in water with 41.3 attosecond time resolution

    Full text link
    We show that the momentum flexibility of inelastic x-ray scattering may be exploited to invert its loss function, alowing real time imaging of density disturbances in a medium. We show the disturbance arising from a point source in liquid water, with a resolution of 41.3 attoseconds (4.13×10174.13 \times 10^{-17} sec) and 1.27 A˚\AA (1.27×1081.27 \times 10^{-8} cm). This result is used to determine the structure of the electron cloud around a photoexcited molecule in solution, as well as the wake generated in water by a 9 MeV gold ion. We draw an analogy with pump-probe techniques and suggest that energy-loss scattering may be applied more generally to the study of attosecond phenomena.Comment: 4 pages, 4 color figure

    SU(4) and SU(2) Kondo Effects in Carbon Nanotube Quantum Dots

    Full text link
    We study the SU(4) Kondo effect in carbon nanotube quantum dots, where doubly degenerate orbitals form 4-electron ``shells''. The SU(4) Kondo behavior is investigated for one, two and three electrons in the topmost shell. While the Kondo state of two electrons is quenched by magnetic field, in case of an odd number of electrons two types of SU(2) Kondo effect may survive. Namely, the spin SU(2) state is realized in the magnetic field parallel to the nanotube (inducing primarily orbital splitting). Application of the perpendicular field (inducing Zeeman splitting) results in the orbital SU(2) Kondo effect.Comment: 5 pages. Some material was previously posted in cond-mat/0608573, v

    Resonant Tunneling in a Dissipative Environment

    Full text link
    We measure tunneling through a single quantum level in a carbon nanotube quantum dot connected to resistive metal leads. For the electrons tunneling to/from the nanotube, the leads serve as a dissipative environment, which suppresses the tunneling rate. In the regime of sequential tunneling, the height of the single-electron conductance peaks increases as the temperature is lowered, although it scales more weekly than the conventional 1/T. In the resonant tunneling regime (temperature smaller than the level width), the peak width approaches saturation, while the peak height starts to decrease. Overall, the peak height shows a non-monotonic temperature dependence. We associate this unusual behavior with the transition from the sequential to the resonant tunneling through a single quantum level in a dissipative environment.Comment: 5 pages, 5 figure

    Modal quantum theory

    Full text link
    We present a discrete model theory similar in structure to ordinary quantum mechanics, but based on a finite field instead of complex amplitudes. The interpretation of this theory involves only the "modal" concepts of possibility and necessity rather than quantitative probability measures. Despite its simplicity, our model theory includes entangled states and has versions of both Bell's theorem and the no cloning theorem.Comment: Presented at the 7th Workshop on Quantum Physics and Logic, Oxford University (29-30 May 2010). Revised 1 Aug 2011 in response to referee comment

    Effects of Dust Geometry in Lyman Alpha Galaxies at z = 4.4

    Full text link
    Equivalent widths (EWs) observed in high-redshift Lyman alpha galaxies could be stronger than the EW intrinsic to the stellar population if dust is present residing in clumps in the inter-stellar medium (ISM). In this scenario, continuum photons could be extinguished while the Lyman alpha photons would be resonantly scattered by the clumps, eventually escaping the galaxy. We investigate this radiative transfer scenario with a new sample of six Lyman alpha galaxy candidates in the GOODS CDF-S, selected at z = 4.4 with ground-based narrow-band imaging obtained at CTIO. Grism spectra from the HST PEARS survey confirm that three objects are at z = 4.4, and that another object contains an active galactic nuclei (AGN). If we assume the other five (non-AGN) objects are at z = 4.4, they have rest-frame EWs from 47 -- 190 A. We present results of stellar population studies of these objects, constraining their rest-frame UV with HST and their rest-frame optical with Spitzer. Out of the four objects which we analyzed, three objects were best-fit to contain stellar populations with ages on the order of 1 Myr and stellar masses from 3 - 10 x 10^8 solar masses, with dust in the amount of A_1200 = 0.9 - 1.8 residing in a quasi-homogeneous distribution. However, one object (with a rest EW ~ 150 A) was best fit by an 800 Myr, 6.6 x 10^9 solar mass stellar population with a smaller amount of dust (A_1200 = 0.4) attenuating the continuum only. In this object, the EW was enhanced ~ 50% due to this dust. This suggests that large EW Lyman alpha galaxies are a diverse population. Preferential extinction of the continuum in a clumpy ISM deserves further investigation as a possible cause of the overabundance of large-EW objects that have been seen in narrow-band surveys in recent years.Comment: Submitted to the Astrophysical Journal. 35 pages, 7 figures and 4 table
    corecore