37 research outputs found

    Temperature dependence of the primary electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides

    Get PDF
    The primary electron transfer (ET) in reaction centers (RC) of Rhodobacter sphaeroides is investigated as a function of temperature with femtosecond time resolution. For temperatures from 300 to 25 K the ET to the bacteriopheophytin is characterized by a biphasic time dependence. The two time constants of τ1=3.5±0.4 ps and τ2=1.2±0.3 ps at T=300 K decrease continously with temperature to values of τ1=1.4±0.3 ps and τ2=0.3±0.15 ps at 25 K. The experimental results indicate that the ET is not thermally activated and that the same ET mechanisms are active at room and low temperatures. All observations are readily rationalized by a two-step ET model with the monomeric bacteriochlorophyll as a real electron carrier

    Time-resolved spectroscopy of the primary photosynthetic processes of membrane-bound reaction centers from an antenna-deficient mutant of Rhodobacter capsulatus

    Get PDF
    The primary photosynthetic reactions in whole membranes of the antenna-deficient mutant strain U43 (pTXA6–10) of Rhodobacter capsulatus are studied by transient absorption and emission spectroscopy with subpicosecond time resolution. Extensive similarities between the transient absorption data on whole membranes and on isolated reaction centers support the idea that the primary processes in isolated reaction centers are not modified by the isolation procedure

    Is bicarbonate in Photosystem II the equivalent of the glutamate ligand to the iron atom in bacterial reaction centers?

    Get PDF
    Photosystem II of oxygen-evolving organisms exhibits a bicarbonate-reversible formate effect on electron transfer between the primary and secondary acceptor quinones, QA and QB. This effect is absent in the otherwise similar electron acceptor complex of purple bacteria, e.g. Rhodobacter sphaeroides. This distinction has led to the suggestion that the iron atom of the acceptor quinone complex in PS II might lack the fifth and sixth ligands provided in the bacterial reaction center (RC) by a glutamate residue at position 234 of the M-subunit in Rb. sphaeroides,RCs (M232 in Rps. viridis). By site-directed mutagenesis we have altered GluM234 in RCs from Rb. sphaeroides, replacing it with valine, glutamine and glycine to form mutants M234EV, M234EQ and M234EG, respectively. These mutants grew competently under phototrophic conditions and were tested for the formate-bicarbonate effect. In chromatophores there were no detectable differences between wild type (Wt) and mutant M234EV with respect to cytochrome b-561 reduction following a flash, and no effect of bicarbonate depletion (by incubation with formate). In isolated RCs, several electron transfer activities were essentially unchanged in Wt and M234EV, M234EQ and M234EG mutants, and no formate-bicarbonate effect was observed on: (a) the fast or slow phases of recovery of the oxidized primary donor (P+) in the absence of exogenous donor, i.e., the recombination of P+QA− or P+QB−, respectively; (b) the kinetics of electron transfer from QA− to QB; or (c) the flash dependent oscillations of semiquinone formation in the presence of donor to P+ (QB turnover). The absence of a formate-bicarbonate effect in these mutants suggests that GluM234 is not responsible for the absence of the formate-bicarbonate effect in Wt bacterial RCs, or at least that other factors must be taken into account. The mutant RCs were also examined for the fast primary electron transfer along the active (A-)branch of the pigment chain, leading to reduction of QA. The kinetics were resolved to reveal the reduction of the monomer bacteriochlorophyll (τ = 3.5 ps), followed by reduction of the bacteriopheophytin (τ = 0.9 ps). Both steps were essentially unaltered from the wild type. However, the rate of reduction of QA was slowed by a factor of 2 (τ = 410 ± 30 and 47 ± 30 ps for M234EQ and M234EV, respectively, compared to 220 ps in the wild type). EPR studies of the isolated RCs showed a characteristic g = 1.82 signal for the QA semiquinone coupled to the iron atom, which was indistinguishable from the wild type. It is concluded that GluM234 is not essential to the normal functioning of the acceptor quinone complex in bacterial RCs and that the role of bicarbonate in PS II is distinct from the role of this residue in bacterial RCs

    Role of tyrosine M210 in the initial charge separation of reaction centers of Rhodobacter sphaeroides

    Get PDF
    Femtosecond spectroscopy was used in combination with site-directed mutagenesis to study the influence of tyrosine M210 (YM210) on the primary electron transfer in the reaction center of Rhodobacter sphaeroides. The exchange of YM210 to phenylalanine caused the time constant of primary electron transfer to increase from 3.5 f 0.4 ps to 16 f 6 ps while the exchange to leucine increased the time constant even more to 22 f 8 ps. The results suggest that tyrosine M210 is important for the fast rate of the primary electron transfer
    corecore