62 research outputs found

    Density regulation amplifies environmentally induced population fluctuations

    Get PDF
    Background Density-dependent regulation is ubiquitous in population dynamics, and its potential interaction with environmental stochasticity complicates the characterization of the random component of population dynamics. Yet, this issue has not received attention commensurate with its relevance for descriptive and predictive modeling of population dynamics. Here we use a Bayesian modeling approach to investigate the contribution of density regulation to population variability in stochastic environments. Methods We analytically derive a formula linking the stationary variance of population abundance/density under Gompertz regulation in a stochastic environment with constant variance to the environmental variance and the strength of density feedback, to investigate whether and how density regulation affects the stationary variance. We examine through simulations whether the relationship between stationary variance and density regulation inferred analytically under the Gompertz model carries over to the Ricker model, widely used in population dynamics modeling. Results The analytical decomposition of the stationary variance under stochastic Gompertz dynamics implies higher variability for strongly regulated populations. Simulation results demonstrate that the pattern of increasing population variability with increasing density feedback found under the Gompertz model holds for the Ricker model as well, and is expected to be a general phenomenon with stochastic population models. We also analytically established and empirically validated that the square of the autoregressive parameter of the Gompertz model in AR(1) form represents the proportion of stationary variance due to density dependence. Discussion Our results suggest that neither environmental stochasticity nor density regulation can alone explain the patterns of population variability in stochastic environments, as these two components of temporal variation interact, with a tendency for density regulation to amplify the magnitude of environmentally induced population fluctuations. This finding has far-reaching implications for population viability. It implies that intense intra-specific resource competition increases the risk of environment-driven population collapse at high density, making opportune harvesting a sensible practice for improving the resistance of managed populations such as fish stocks to environmental perturbations. The separation of density-dependent and density-independent processes will help improve population dynamics modeling, while providing a basis for evaluating the relative importance of these two categories of processes that remains a topic of long-standing controversy among ecologists

    Basin-scale biogeography of marine phytoplankton reflects cellular-scale optimization of metabolism and physiology

    Get PDF
    Extensive microdiversity within Prochlorococcus, the most abundant marine cyanobacterium, occurs at scales from a single droplet of seawater to ocean basins. To interpret the structuring role of variations in genetic potential, as well as metabolic and physiological acclimation, we developed a mechanistic constraint-based modeling framework that incorporates the full suite of genes, proteins, metabolic reactions, pigments, and biochemical compositions of 69 sequenced isolates spanning the Prochlorococcus pangenome. Optimizing each strain to the local, observed physical and chemical environment along an Atlantic Ocean transect, we predicted variations in strain-specific patterns of growth rate, metabolic configuration, and physiological state, defining subtle niche subspaces directly attributable to differences in their encoded metabolic potential. Predicted growth rates covaried with observed ecotype abundances, affirming their significance as a measure of fitness and inferring a nonlinear density dependence of mortality. Our study demonstrates the potential to interpret global-scale ecosystem organization in terms of cellular-scale processes

    The Macromolecular Basis of Phytoplankton C:N:P Under Nitrogen Starvation

    Get PDF
    Biogeochemical cycles in the ocean are strongly affected by the elemental stoichiometry (C:N:P) of phytoplankton, which largely reflects their macromolecular content. A greater understanding of how this macromolecular content varies among phytoplankton taxa and with resource limitation may strengthen physiological and biogeochemical modeling efforts. We determined the macromolecular basis (protein, carbohydrate, lipid, nucleic acids, pigments) of C:N:P in diatoms and prasinophytes, two globally important phytoplankton taxa, in response to N starvation. Despite their differing cell sizes and evolutionary histories, the relative decline in protein during N starvation was similar in all four species studied and largely determined variations in N content. The accumulation of carbohydrate and lipid dominated the increase in C content and C:N in all species during N starvation, but these processes differed greatly between diatoms and prasinophytes. Diatoms displayed far greater accumulation of carbohydrate with N starvation, possibly due to their greater cell size and storage capacity, resulting in larger increases in C content and C:N. In contrast, the prasinophytes had smaller increases in C and C:N that were largely driven by lipid accumulation. Variation in C:P and N:P was species-specific and mainly determined by residual P pools, which likely represent intracellular storage of inorganic P and accounted for the majority of cellular P in all species throughout N starvation. Our findings indicate that carbohydrate and lipid accumulation may play a key role in determining the environmental and taxonomic variability in phytoplankton C:N. This quantitative assessment of macromolecular and elemental content spanning several marine phytoplankton species can be used to develop physiological models for ecological and biogeochemical applications

    The Role of Microbial Exopolymers in Determining the Fate of Oil and Chemical Dispersants in the Ocean

    Get PDF
    The production of extracellular polymeric substances (EPS) by planktonic microbes can influence the fate of oil and chemical dispersants in the ocean through emulsification, degradation, dispersion, aggregation, and/or sedimentation. In turn, microbial community structure and function, including the production and character of EPS, is influenced by the concentration and chemical composition of oil and chemical dispersants. For example, the production of marine oil snow and its sedimentation and flocculent accumulation to the seafloor were observed on an expansive scale after the Deepwater Horizon oil spill in the Northern Gulf of Mexico in 2010, but little is known about the underlying control of these processes. Here, we review what we do know about microbially produced EPS, how oil and chemical dispersant can influence the production rate and chemical and physical properties of EPS, and ultimately the fate of oil in the water column. To improve our response to future oil spills, we need a better understanding of the biological and physiochemical controls of EPS production by microbes under a range of environmental conditions, and in this paper, we provide the key knowledge gaps that need to be filled to do so

    Mining a Sea of Data: Deducing the Environmental Controls of Ocean Chlorophyll

    Get PDF
    Chlorophyll biomass in the surface ocean is regulated by a complex interaction of physiological, oceanographic, and ecological factors and in turn regulates the rates of primary production and export of organic carbon to the deep ocean. Mechanistic models of phytoplankton responses to climate change require the parameterization of many processes of which we have limited knowledge. We develop a statistical approach to estimate the response of remote-sensed ocean chlorophyll to a variety of physical and chemical variables. Irradiance over the mixed layer depth, surface nitrate, sea-surface temperature, and latitude and longitude together can predict 83% of the variation in log chlorophyll in the North Atlantic. Light and nitrate regulate biomass through an empirically determined minimum function explaining nearly 50% of the variation in log chlorophyll by themselves and confirming that either light or macronutrients are often limiting and that much of the variation in chlorophyll concentration is determined by bottom-up mechanisms. Assuming the dynamics of the future ocean are governed by the same processes at work today, we should be able to apply these response functions to future climate change scenarios, with changes in temperature, nutrient distributions, irradiance, and ocean physics

    Light Variability Illuminates Niche-Partitioning among Marine Picocyanobacteria

    Get PDF
    Prochlorococcus and Synechococcus picocyanobacteria are dominant contributors to marine primary production over large areas of the ocean. Phytoplankton cells are entrained in the water column and are thus often exposed to rapid changes in irradiance within the upper mixed layer of the ocean. An upward fluctuation in irradiance can result in photosystem II photoinactivation exceeding counteracting repair rates through protein turnover, thereby leading to net photoinhibition of primary productivity, and potentially cell death. Here we show that the effective cross-section for photosystem II photoinactivation is conserved across the picocyanobacteria, but that their photosystem II repair capacity and protein-specific photosystem II light capture are negatively correlated and vary widely across the strains. The differences in repair rate correspond to the light and nutrient conditions that characterize the site of origin of the Prochlorococcus and Synechococcus isolates, and determine the upward fluctuation in irradiance they can tolerate, indicating that photoinhibition due to transient high-light exposure influences their distribution in the ocean

    Climate Change and the Potential Spreading of Marine Mucilage and Microbial Pathogens in the Mediterranean Sea

    Get PDF
    Background: Marine snow (small amorphous aggregates with colloidal properties) is present in all oceans of the world. Surface water warming and the consequent increase of water column stability can favour the coalescence of marine snow into marine mucilage, large marine aggregates representing an ephemeral and extreme habitat. Marine mucilage characterize aquatic systems with altered environmental conditions. Methodology/Principal Findings: We investigated, by means of molecular techniques, viruses and prokaryotes within the mucilage and in surrounding seawater to examine the potential of mucilage to host new microbial diversity and/or spread marine diseases. We found that marine mucilage contained a large and unexpectedly exclusive microbial biodiversity and hosted pathogenic species that were absent in surrounding seawater. We also investigated the relationship between climate change and the frequency of mucilage in the Mediterranean Sea over the last 200 years and found that the number of mucilage outbreaks increased almost exponentially in the last 20 years. The increasing frequency of mucilage outbreaks is closely associated with the temperature anomalies. Conclusions/Significance: We conclude that the spreading of mucilage in the Mediterranean Sea is linked to climate-driven sea surface warming. The mucilage can act as a controlling factor of microbial diversity across wide oceanic regions and could have the potential to act as a carrier of specific microorganisms, thereby increasing the spread of pathogenic bacteria

    The Joggins Fossil Cliffs UNESCO World Heritage site: a review of recent research

    Get PDF
    The Joggins Fossil Cliffs UNESCO World Heritage Site is a Carboniferous coastal section along the shores of the Cumberland Basin, an extension of Chignecto Bay, itself an arm of the Bay of Fundy, with excellent preservation of biota preserved in their environmental context. The Cliffs provide insight into the Late Carboniferous (Pennsylvanian) world, the most important interval in Earth’s past for the formation of coal. The site has had a long history of scientific research and, while there have been well over 100 publications in over 150 years of research at the Cliffs, discoveries continue and critical questions remain. Recent research (post-1950) falls under one of three categories: general geology; paleobiology; paleoecology. It provides a context for future work at the site. While recent research has made large strides in our understanding of the Late Carboniferous, many questions remain to be studied and resolved, and interest in addressing these issues is clearly not waning. Within the World Heritage Site, we suggest that the uppermost formations (Springhill Mines and Ragged Reef), paleosols, floral and trace fossil taxonomy, and microevolutionary patterns are among the most promising areas for future study. RÉSUMÉ Le site du patrimoine mondial de l’UNESCO des falaises fossilifères de Joggins est situé sur une partie du littoral qui date du Carbonifère, sur les rives du bassin de Cumberland, qui est une prolongation de la baie de Chignecto, elle-même un bras de la baie de Fundy. L’endroit offre un excellent milieu de préservation de la faune et de la flore dans leur environnement. Les falaises donnent un aperçu du monde du Carbonifère tardif (Pennsylvanien), soit la période de l’histoire de la terre la plus importante pour la formation du charbon. Ces falaises ont fait depuis longtemps l’objet de travaux de recherche scientifique et plus de 100 publications y ont été consacrées au cours de 150 années de recherche. L’endroit suscite encore des découvertes et il soulève toujours des questions essentielles. Les travaux de recherche récents (depuis les années 1950) se répartissent en trois catégories: géologie générale; paléobiologie; et reconstitution des paléomilieux, en plus d’offrir des avenues pour les futurs travaux qui devraient s’y dérouler. Même si la recherche récente a largement contribué à une meilleure compréhension du Carbonifère tardif, de nombreuses questions demeurent sans réponse et commandent qu’on les étudie et les résolve et il est manifeste que l’intérêt pour ces questions est bien loin de s’amenuiser. Sur ce site du patrimoine mondial, nous soutenons que les futurs sujets d’étude les plus prometteurs seraient les formations supérieures (Springhill Mines et Ragged Reef), les paléosols, la taxonomie florale et des ichnofossiles, ainsi que les paramètres de microévolution. [Traduit par la redaction

    Capacity of the common Arctic picoeukaryote Micromonas to adapt to a warming ocean

    No full text
    Abstract Phytoplankton are sensitive to temperature and other environmental conditions expected to change with warming over the next century. We quantified the capacity of an ecologically dominant Arctic phytoplankton species, Micromonas polaris, to adapt to changes in temperature, increased temperature and irradiance, and increased temperature and periodic nitrogen starvation, over several hundred generations. When originally isolated, this strain of Micromonas had its maximum growth rate at 6°C, and its growth rate declined above 10°C. We find an evolutionary increase in growth rate, with the largest increases associated with the elevated temperature treatments, especially when combined with repeated nitrate starvation. After several hundred generations of exposure, the growth rate of Micromonas under 13°C almost doubled and was higher than under 6°C. This increase in growth rate is consistent with the Arrhenius model of temperature effects on metabolism and suggests a general hypothesis for the evolutionary potential of phytoplankton to respond evolutionarily to temperature change
    • …
    corecore