133 research outputs found

    Renormalization group analysis of thermal transport in the disordered Fermi liquid

    Get PDF
    We present a detailed study of thermal transport in the disordered Fermi liquid with short-range interactions. At temperatures smaller than the impurity scattering rate, i.e., in the diffusive regime, thermal conductivity acquires non-analytic quantum corrections. When these quantum corrections become large at low temperatures, the calculation of thermal conductivity demands a theoretical approach that treats disorder and interactions on an equal footing. In this paper, we develop such an approach by merging Luttinger's idea of using gravitational potentials for the analysis of thermal phenomena with a renormalization group calculation based on the Keldysh nonlinear sigma model. The gravitational potentials are introduced in the action as auxiliary sources that couple to the heat density. These sources are a convenient tool for generating expressions for the heat density and its correlation function from the partition function. Already in the absence of the gravitational potentials, the nonlinear sigma model contains several temperature-dependent renormalization group charges. When the gravitational potentials are introduced into the model, they acquire an independent renormalization group flow. We show that this flow preserves the phenomenological form of the correlation function, reflecting its relation to the specific heat and the constraints imposed by energy conservation. The main result of our analysis is that the Wiedemann-Franz law holds down to the lowest temperatures even in the presence of disorder and interactions and despite the quantum corrections that arise for both the electric and thermal conductivities.Comment: 30 pages, 37 figure

    Suppression of \bbox{T_c} in superconducting amorphous wires

    Full text link
    The suppression of the mean field temperature of the superconducting transition, TcT_c, in homogeneous amorphous wires is studied. We develop a theory that gives TcT_c in situations when the dynamically enhanced Coulomb repulsion competes with the contact attraction. The theory accurately describes recent experiments on TcT_c--suppression in superconducting wires, after a procedure that minimizes the role of nonuniversal mechanisms influencing TcT_c is applied.Comment: RevTeX, 4 pages, 3 figure

    Keldysh approach to the renormalization group analysis of the disordered electron liquid

    Get PDF
    We present a Keldysh nonlinear sigma-model approach to the renormalization group analysis of the disordered electron liquid. We include both the Coulomb interaction and Fermi-liquid type interactions in the singlet and triplet channels into the formalism. Based on this model, we reproduce the coupled renormalization group equations for the diffusion coefficient, the frequency, and interaction constants previously derived with the replica model in the imaginary time technique. With the help of source fields coupling to the particle-number and spin densities, we study the density-density and spin density-spin density correlation functions in the diffusive regime. This allows us to obtain results for the electric conductivity and the spin susceptibility and thereby to re-derive the main results of the one-loop renormalization group analysis of the disordered electron liquid in the Keldysh formalism.Comment: 29 pages, 15 figure

    Metal-Insulator Transition in Disordered Two-Dimensional Electron Systems

    Full text link
    We present a theory of the metal-insulator transition in a disordered two-dimensional electron gas. A quantum critical point, separating the metallic phase which is stabilized by electronic interactions, from the insulating phase where disorder prevails over the electronic interactions, has been identified. The existence of the quantum critical point leads to a divergence in the density of states of the underlying collective modes at the transition, causing the thermodynamic properties to behave critically as the transition is approached. We show that the interplay of electron-electron interactions and disorder can explain the observed transport properties and the anomalous enhancement of the spin susceptibility near the metal-insulator transition

    Branch-cut Singularities in Thermodynamics of Fermi Liquid Systems

    Full text link
    The recently measured spin susceptibility of the two dimensional electron gas exhibits a strong dependence on temperature, which is incompatible with the standard Fermi liquid phenomenology. Here we show that the observed temperature behavior is inherent to ballistic two dimensional electrons. Besides the single-particle and collective excitations, the thermodynamics of Fermi liquid systems includes effects of the branch-cut singularities originating from the edges of the continuum of pairs of quasiparticles. As a result of the rescattering induced by interactions, the branch-cut singularities generate non-analyticities in the thermodynamic potential which reveal themselves in anomalous temperature dependences. Calculation of the spin susceptibility in such a situation requires a non-perturbative treatment of the interactions. As in high-energy physics, a mixture of the collective excitations and pairs of quasiparticles can be effectively described by a pole in the complex momentum plane. This analysis provides a natural explanation for the observed temperature dependence of the spin susceptibility, both in sign and magnitude.Comment: 8 pages, 3 figure

    Heat diffusion in the disordered electron gas

    Get PDF
    We study the thermal conductivity of the disordered two-dimensional electron gas. To this end we analyze the heat density-heat density correlation function concentrating on the scattering processes induced by the Coulomb interaction in the sub-temperature energy range. These scattering processes are at the origin of logarithmic corrections violating the Wiedemann-Franz law. Special care is devoted to the definition of the heat density in the presence of the long-range Coulomb interaction. To clarify the structure of the correlation function, we present details of a perturbative calculation. While the conservation of energy strongly constrains the general form of the heat density-heat density correlation function, the balance of various terms turns out to be rather different from that for the correlation functions of other conserved quantities such as the density-density or spin density-spin density correlation function.Comment: 23 pages, 12 figure

    Kinetics of the disordered Bose gas with collisions

    Get PDF
    We discuss the kinetics of the disordered interacting Bose gas using the Boltzmann transport equation. The theory may serve as a unifying framework for studying questions of dynamics of the expanding Bose gas at different stages of the expansion. We show that the transport theory allows us to straightforwardly reproduce and generalize a number of results previously obtained from microscopic models in different formalisms. Based on estimates for the interparticle scattering rates, we discuss the relevance of interaction effects for the localization problem in the interacting disordered Bose gas. We argue that, if the number of particles is large enough, the size of the expanding cloud may exceed the localization length. We describe the spreading of the wave packet in this regime as collision-induced diffusion and compare the obtained rate of expansion to known results on subdiffusive spreading in nonlinear disordered lattices.Comment: 7 page
    • …
    corecore