1,567 research outputs found

    Apparatus for real-time acoustic imaging of Rayleigh-Benard convection

    Full text link
    We have designed and built an apparatus for real-time acoustic imaging of convective flow patterns in optically opaque fluids. This apparatus takes advantage of recent advances in two-dimensional ultrasound transducer array technology; it employs a modified version of a commercially available ultrasound camera, similar to those employed in non-destructive testing of solids. Images of convection patterns are generated by observing the lateral variation of the temperature dependent speed of sound via refraction of acoustic plane waves passing vertically through the fluid layer. The apparatus has been validated by observing convection rolls in both silicone oil and ferrofluid.Comment: 20 pages, 11 figures, submitted to the Review of Scientific Instrument

    Altered paired associative stimulation-induced plasticity in NMDAR encephalitis

    Get PDF
    Objective: To determine whether neurophysiological mechanisms indicating cortical excitability, long-term potentiation (LTP)-like plasticity, GABAergic and glutamatergic function are altered in patients with anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis and whether they can be helpful as markers of diagnostic assessment, disease progression, and potentially therapy response. Methods: Neurophysiological characterizations of patients with NMDAR encephalitis (n = 34, mean age: 28 ± 11 years; 30 females) and age/gender-matched healthy controls (n = 27, 28.5 ± 10 years; 25 females) were performed using transcranial magnetic stimulation-derived protocols including resting motor threshold, recruitment curve, intracortical facilitation, short intracortical inhibition, and cortical silent period. Paired associative stimulation (PAS) was applied to assess LTP-like mechanisms which are mediated through NMDAR. Moreover, resting state functional connectivity was determined using functional magnetic resonance imaging. Results: PAS-induced plasticity differed significantly between groups (P = 0.0056). Cortical excitability, as assessed via motor-evoked potentials after PAS, decreased in patients, whereas it increased in controls indicating malfunctioning of NMDAR in encephalitis patients. Lower PAS-induced plasticity significantly correlated with the modified Rankin Scale (mRS) (r = −0.41; P = 0.0031) and was correlated with lower functional connectivity within the motor network in NMDAR encephalitis patients (P < 0.001, uncorrected). Other neurophysiological parameters were not significantly different between groups. Follow-up assessments were available in six patients and demonstrated parallel improvement of PAS-induced plasticity and mRS. Interpretation: Assessment of PAS-induced plasticity may help to determine NMDAR dysfunction and disease severity in NMDAR encephalitis, and might even aid as a sensitive, noninvasive, and well-tolerated “electrophysiological biomarker” to monitor therapy response in the future.Clinical Trial Registration: ClinicalTrials.gov: Identifier: NCT0186557

    Spatial Patterns and Sequential Sampling Plans for Estimating Densities of Stink Bugs (Hemiptera: Pentatomidae) in Soybean in the North Central Region of the United States

    Get PDF
    Stink bugs are an emerging threat to soybean (Fabales: Fabaceae) in the North Central Region of the United States. Consequently, region-specific scouting recommendations for stink bugs are needed. The aim of this study was to characterize the spatial pattern and to develop sampling plans to estimate stink bug population density in soybean fields. In 2016 and 2017, 125 fields distributed across nine states were sampled using sweep nets. Regression analyses were used to determine the effects of stink bug species [Chinavia hilaris (Say) (Hemiptera: Pentatomidae) and Euschistus spp. (Hemiptera: Pentatomidae)], life stages (nymphs and adults), and field locations (edge and interior) on spatial pattern as represented by variance–mean relationships. Results showed that stink bugs were aggregated. Sequential sampling plans were developed for each combination of species, life stage, and location and for all the data combined. Results for required sample size showed that an average of 40–42 sample units (sets of 25 sweeps) would be necessary to achieve a precision of 0.25 for stink bug densities commonly encountered across the region. However, based on the observed geographic gradient of stink bug densities, more practical sample sizes (5–10 sample units) may be sufficient in states in the southeastern part of the region, whereas impractical sample sizes (\u3e100 sample units) may be required in the northwestern part of the region. Our findings provide research-based sampling recommendations for estimating densities of these emerging pests in soybean

    Efficiency of Nitrogen Assimilation by N 2

    Full text link

    Curating a Global Collection of Fiddler Crabs for the American Museum of Natural History, NYC

    Get PDF
    A collection of approximately 1000 jars of preserved fiddler crabs was received from Dr. F.H. Barnwell, Ecology, Evolution and Behavior, University of Minnesota–Twin Cities. It contained jars of crabs from Africa, the Americas, and the Indo-Pacific. Specimens in each jar were sorted by species and gender and then counted. An Excel® spreadsheet recorded collecting data while Google Earth® determined the GPS of each recovery site. The collection was reduced to 569 jars containing 68 species representing seven genera. The entire collection consists of 7804 crabs with 5925 males and 1879 females. New labels with up-dated information were made for each jar. Barnwell’s scientific legacy is now ready for transport to the American Museum of Natural History in New York City

    Curating a Global Collection of Fiddler Crabs for the American Museum of Natural History, NYC

    Get PDF
    A collection of approximately 1000 jars of preserved fiddler crabs was received from Dr. F.H. Barnwell, Ecology, Evolution and Behavior, University of Minnesota–Twin Cities. It contained jars of crabs from Africa, the Americas, and the Indo-Pacific. Specimens in each jar were sorted by species and gender and then counted. An Excel® spreadsheet recorded collecting data while Google Earth® determined the GPS of each recovery site. The collection was reduced to 569 jars containing 68 species representing seven genera. The entire collection consists of 7804 crabs with 5925 males and 1879 females. New labels with up-dated information were made for each jar. Barnwell’s scientific legacy is now ready for transport to the American Museum of Natural History in New York City

    Building block libraries and structural considerations in the self-assembly of polyoxometalate and polyoxothiometalate systems

    Get PDF
    Inorganic metal-oxide clusters form a class of compounds that are unique in their topological and electronic versatility and are becoming increasingly more important in a variety of applications. Namely, Polyoxometalates (POMs) have shown an unmatched range of physical properties and the ability to form structures that can bridge several length scales. The formation of these molecular clusters is often ambiguous and is governed by self-assembly processes that limit our ability to rationally design such molecules. However, recent years have shown that by considering new building block principles the design and discovery of novel complex clusters is aiding our understanding of this process. Now with current progress in thiometalate chemistry, specifically polyoxothiometalates (POTM), the field of inorganic molecular clusters has further diversified allowing for the targeted development of molecules with specific functionality. This chapter discusses the main differences between POM and POTM systems and how this affects synthetic methodologies and reactivities. We will illustrate how careful structural considerations can lead to the generation of novel building blocks and further deepen our understanding of complex systems

    Community Composition, Abundance, and Phenology of Stink Bugs (Hemiptera: Pentatomidae) in Soybean in the North Central Region of the United States

    Get PDF
    Stink bugs (Hemiptera: Pentatomidae) are an increasing threat to soybean (Fabales: Fabaceae) production in the North Central Region of the United States, which accounts for 80% of the country’s total soybean production. Characterization of the stink bug community is essential for development of management programs for these pests. However, the composition of the stink bug community in the region is not well defined. This study aimed to address this gap with a 2-yr, 9-state survey. Specifically, we characterized the relative abundance, richness, and diversity of taxa in this community, and assessed phenological differences in abundance of herbivorous and predatory stink bugs. Overall, the stink bug community was dominated by Euschistus spp. (Hemiptera: Pentatomidae) and Chinavia hilaris (Say) (Hemiptera: Pentatomidae). Euschistus variolarius (Palisot de Beauvois) (Hemiptera: Pentatomidae), C. hilaris and Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) were more abundant in the northwestern, southeastern and eastern parts, respectively, of the North Central Region of the United States. Economically significant infestations of herbivorous species occurred in fields in southern parts of the region. Species richness differed across states, while diversity was the same across the region. Herbivorous and predatory species were more abundant during later soybean growth stages. Our results represent the first regional characterization of the stink bug community in soybean fields and will be fundamental for the development of state- and region-specific management programs for these pests in the North Central Region of the United States
    corecore