18 research outputs found

    Numerical Analysis of Ca2+ Depletion in the Transverse Tubular System of Mammalian Muscle

    Get PDF
    AbstractCalcium currents were recorded in contracting and actively shortening mammalian muscle fibers. In order to characterize the influence of extracellular calcium concentration changes in the small unstirred lumina of the transverse tubular system (TTS) on the time course of the slow L-type calcium current (ICa), we have combined experimental measurements of ICa with quantitative numerical simulations of Ca2+ depletion. ICa was recorded both in calcium-buffered and unbuffered external solutions using the two-microelectrode voltage clamp technique (2-MVC) on short murine toe muscle fibers. A simulation program based on a distributed TTS model was used to calculate the effect of ion depletion in the TTS. The experimental data obtained in a solution where ion depletion is suppressed by a high amount of a calcium buffering agent were used as input data for the simulation. The simulation output was then compared with experimental data from the same fiber obtained in unbuffered solution. Taking this approach, we could quantitatively show that the calculated Ca2+ depletion in the transverse tubular system of contracting mammalian muscle fibers significantly affects the time-dependent decline of Ca2+ currents. From our findings, we conclude that ion depletion in the tubular system may be one of the major effects for the ICa decline measured in isotonic physiological solution under voltage clamp conditions

    Quantification of total calcium in terminal cisternae of skinned muscle fibers by imaging electron energy-loss spectroscopy

    No full text
    Skinned muscle fibers are ideal model preparations for the investigation of Ca-regulatory mechanisms. Their internal ionic milieu can be easily controlled and distinct physiological states are well defined. We have measured the total Ca content in the terminal cisternae of such preparations using imaging electron energy-loss spectroscopy (Image-EELS) as a new approach for quantification of sub-cellular element distributions. Murine muscle fibers submitted to a standardized calcium-loading procedure were cryo-fixed with a combined solution exchanger/plunge freezing device. Energy-filtered image series were recorded from ultrathin freeze-dried cryosections of samples immobilized in either relaxed or caffeine-contracted state. From these image series, electron energy-loss spectra were extracted by digital image-processing and quantitatively processed by multiple-least-squares-fitting with reference spectra. The calculated fit coefficients were converted to Ca-concentrations by a calibration obtained from Ca-standards. Total Ca-contents in the terminal cisternae of skinned skeletal muscle fibers decreased upon caffeine-induced Ca-release from 123 ± 159 (±11) to 73 ± 102 (±8) mmol/kg d.w. (weighted mean ± SD (±SEM))

    Cardiomyocyte depolarization triggers NOS-dependent NO transient after calcium release, reducing the subsequent calcium transient

    No full text
    Cardiac excitation-contraction coupling and metabolic and signaling activities are centrally modulated by nitric oxide (NO), which is produced by one of three NO synthases (NOSs). Despite the significant role of NO in cardiac C

    Microdomain calcium fluctuations as a colored noise process

    No full text
    Calcium ions play a key role in subcellular signaling as localized transients of the intracellular calcium concentration modify the activity of ion channels, enzymes and transcription factors, among others. The intracellular calcium concentration is inherently noisy, as diffusion, the transient binding to and dissociation from buffer molecules and stochastically gating calcium channels contribute to the fluctuations of the local copy number of CaCa ions. We study the properties of the fluctuating calcium concentration in sub-femtoliter volumes using an exact stochastic simulation algorithm and approximations to the exact stochastic solution. It is shown that the time course of the local calcium concentration represents a colored noise process whose autocorrelation time is a function of buffer kinetics and diffusion constants. Using the chemical Langevin description and the excess buffer approximation of the process, fast approximative algorithms and theoretical connections to the Ornstein-Uhlenbeck process are obtained. In a generic example, we show how calcium noise can couple to the dynamics of a single variable moving in a double-well potential, leading to a colored noise induced transition. Our work shows how a multitude of intracellular signaling pathways may be influenced by the inherent stochasticity of calcium signals, a key messenger in virtually any cell type, and how the calcium signal can be implemented efficiently in cellular signaling models

    Localized nuclear and perinuclear Ca2+ signals in intact mouse skeletal muscle fibers

    Get PDF
    Nuclear Ca2+ is important for the regulation of several nuclear processes such as gene expression. Localized Ca2+ signals (LCSs) in skeletal muscle fibers of mice have been mainly studied as Ca2+ release events from the sarcoplasmic reticulum. Their location with regard to cell nuclei has not been investigated.Our study is based on the hypothesis that LCSs associated with nuclei are present in skeletal muscle fibers of adult mice. Therefore we carried out experiments addressing this question and we found novel Ca2+ signals associated with nuclei of skeletal muscle fibers (with possibly attached satellite cells). We measured localized nuclear and perinuclear Ca2+ signals (NLCSs and PLCSs) alongside cytosolic localized Ca2+ signals (CLCSs) during a hypertonic treatment. We also observed NLCSs under isotonic conditions. The NLCSs and PLCSs are Ca2+ signals in the range of micrometer (FWHM (full width at half maximum): 2.75 µm±0.27 µm (NLCSs) and 2.55 µm±0.17 µm (PLCSs), S.E.M.). Additionally, global nuclear Ca2+ signals (NGCSs) were observed.To investigate which type of Ca2+ channels contribute to the Ca2+ signals associated with nuclei in skeletal muscle fibers, we performed measurements with the RyR blocker dantrolene, the DHPR blocker nifedipine or the IP3R blocker Xestospongin C. We observed Ca2+ signals associated with nuclei in the presence of each blocker. Nifedipine and dantrolene had an inhibitory effect on the fraction of fibers with PLCSs. The situation for the fraction of fibers with NLCSs is more complex indicating that RyR is less important for the generation of NLCSs compared to the generation of PLCSs. The fraction of fibers with NLCSs and PLCSs is not reduced in the presence of Xestospongin C.The localized perinuclear and intranuclear Ca2+ signals may be a powerful tool for the cell to regulate adaptive processes as gene expression. The intranuclear Ca2+ signals may be particularly interesting in this respect

    Enabling the detection of UV signal in multimodal nonlinear microscopy with catalogue lens components

    No full text
    Using an optical system made from fused silica catalogue optical components, third-order nonlinear microscopy has been enabled on conventional Ti:sapphire laser-based multiphoton microscopy setups. The optical system is designed using two lens groups with straightforward adaptation to other microscope stands when one of the lens groups is exchanged. Within the theoretical design, the optical system collects and transmits light with wavelengths between the near ultraviolet and the near infrared from an object field of at least 1 mm in diameter within a resulting numerical aperture of up to 0.56. The numerical aperture can be controlled with a variable aperture stop between the two lens groups of the condenser. We demonstrate this new detection capability in third harmonic generation imaging experiments at the harmonic wavelength of ~300 nm and in multimodal nonlinear optical imaging experiments using third-order sum frequency generation and coherent anti-Stokes Raman scattering microscopy so that the wavelengths of the detected signals range from ~300 nm to ~660 nm
    corecore