12,594 research outputs found

    Observation of Entanglement Between Itinerant Microwave Photons and a Superconducting Qubit

    Full text link
    A localized qubit entangled with a propagating quantum field is well suited to study non-local aspects of quantum mechanics and may also provide a channel to communicate between spatially separated nodes in a quantum network. Here, we report the on demand generation and characterization of Bell-type entangled states between a superconducting qubit and propagating microwave fields composed of zero, one and two-photon Fock states. Using low noise linear amplification and efficient data acquisition we extract all relevant correlations between the qubit and the photon states and demonstrate entanglement with high fidelity.Comment: 5 pages, 3 figure

    Cavity QED with separate photon storage and qubit readout modes

    Full text link
    We present the realization of a cavity quantum electrodynamics setup in which photons of strongly different lifetimes are engineered in different harmonic modes of the same cavity. We achieve this in a superconducting transmission line resonator with superconducting qubits coupled to the different modes. One cavity mode is strongly coupled to a detection line for qubit state readout, while a second long lifetime mode is used for photon storage and coherent quantum operations. We demonstrate sideband based measurement of photon coherence, generation of n photon Fock states and the scaling of the sideband Rabi frequency with the square root of n using a scheme that may be extended to realize sideband based two-qubit logic gates.Comment: 4 pages, 5 figures, version with high resolution figures available at http://qudev.ethz.ch/content/science/PubsPapers.htm

    Momentum dependent ultrafast electron dynamics in antiferromagnetic EuFe2As2

    Get PDF
    Employing the momentum-sensitivity of time- and angle-resolved photoemission spectroscopy we demonstrate the analysis of ultrafast single- and many-particle dynamics in antiferromagnetic EuFe2As2. Their separation is based on a temperature-dependent difference of photo-excited hole and electron relaxation times probing the single particle band and the spin density wave gap, respectively. Reformation of the magnetic order occurs at 800 fs, which is four times slower compared to electron-phonon equilibration due to a smaller spin-dependent relaxation phase space

    Stationary Entangled Radiation from Micromechanical Motion

    Full text link
    Mechanical systems facilitate the development of a new generation of hybrid quantum technology comprising electrical, optical, atomic and acoustic degrees of freedom. Entanglement is the essential resource that defines this new paradigm of quantum enabled devices. Continuous variable (CV) entangled fields, known as Einstein-Podolsky-Rosen (EPR) states, are spatially separated two-mode squeezed states that can be used to implement quantum teleportation and quantum communication. In the optical domain, EPR states are typically generated using nondegenerate optical amplifiers and at microwave frequencies Josephson circuits can serve as a nonlinear medium. It is an outstanding goal to deterministically generate and distribute entangled states with a mechanical oscillator. Here we observe stationary emission of path-entangled microwave radiation from a parametrically driven 30 micrometer long silicon nanostring oscillator, squeezing the joint field operators of two thermal modes by 3.40(37) dB below the vacuum level. This mechanical system correlates up to 50 photons/s/Hz giving rise to a quantum discord that is robust with respect to microwave noise. Such generalized quantum correlations of separable states are important for quantum enhanced detection and provide direct evidence for the non-classical nature of the mechanical oscillator without directly measuring its state. This noninvasive measurement scheme allows to infer information about otherwise inaccessible objects with potential implications in sensing, open system dynamics and fundamental tests of quantum gravity. In the near future, similar on-chip devices can be used to entangle subsystems on vastly different energy scales such as microwave and optical photons.Comment: 13 pages, 5 figure

    Type Ia Supernovae and Accretion Induced Collapse

    Full text link
    Using the population synthesis binary evolution code StarTrack, we present theoretical rates and delay times of Type Ia supernovae arising from various formation channels. These channels include binaries in which the exploding white dwarf reaches the Chandrasekhar mass limit (DDS, SDS, and helium-rich donor scenario) as well as the sub-Chandrasekhar mass scenario, in which a white dwarf accretes from a helium-rich companion and explodes as a SN Ia before reaching the Chandrasekhar mass limit. We find that using a common envelope parameterization employing energy balance with alpha=1 and lambda=1, the supernova rates per unit mass (born in stars) of sub-Chandrasekhar mass SNe Ia exceed those of all other progenitor channels at epochs t=0.7 - 4 Gyr for a burst of star formation at t=0. Additionally, the delay time distribution of the sub-Chandrasekhar model can be divided in to two distinct evolutionary channels: the `prompt' helium-star channel with delay times < 500 Myr, and the `delayed' double white dwarf channel with delay times > 800 Myr spanning up to a Hubble time. These findings are in agreement with recent observationally-derived delay time distributions which predict that a large number of SNe Ia have delay times < 1 Gyr, with a significant fraction having delay times < 500 Myr. We find that the DDS channel is also able to account for the observed rates of SNe Ia. However, detailed simulations of white dwarf mergers have shown that most of these mergers will not lead to SNe Ia but rather to the formation of a neutron star via accretion-induced collapse. If this is true, our standard population synthesis model predicts that the only progenitor channel which can account for the rates of SNe Ia is the sub-Chandrasekhar mass scenario, and none of the other progenitors considered can fully account for the observed rates.Comment: 6 pages, 1 figure, 1 table, to appear in proceedings for "Binary Star Evolution: Mass Loss, Accretion and Mergers

    Multi-Modal Human-Machine Communication for Instructing Robot Grasping Tasks

    Full text link
    A major challenge for the realization of intelligent robots is to supply them with cognitive abilities in order to allow ordinary users to program them easily and intuitively. One way of such programming is teaching work tasks by interactive demonstration. To make this effective and convenient for the user, the machine must be capable to establish a common focus of attention and be able to use and integrate spoken instructions, visual perceptions, and non-verbal clues like gestural commands. We report progress in building a hybrid architecture that combines statistical methods, neural networks, and finite state machines into an integrated system for instructing grasping tasks by man-machine interaction. The system combines the GRAVIS-robot for visual attention and gestural instruction with an intelligent interface for speech recognition and linguistic interpretation, and an modality fusion module to allow multi-modal task-oriented man-machine communication with respect to dextrous robot manipulation of objects.Comment: 7 pages, 8 figure

    Reduction and analysis of photometric data on Comet Halley

    Get PDF
    The discovery that periodic variations in the brightness of Comet Halley were characterized by two unrelated frequencies implies that the nucleus is in a complex state of rotation. It either nutates as a result of the random addition of small torque perturbations accumulated over many perihelion passages, or the jet activity torques are so strong that it precesses wildly at each perihelion passage. To diagnose the state of nuclear rotation, researchers began a program to acquire photometric time series of the comet as it recedes from the sun. The intention is to observe the decay of the comet's atmosphere and then, when it is unemcumbered by the light of the coma, follow the light variation of the nucleus itself. The latter will be compared with preperihelion time series and the orientation of the nucleus at the time of Vega and Giotto flybys and an accurate rotational ephemeris constructed. Halley was observed on 38 nights during 1987 and approximately 21 nights in 1988. The comet moved from 5 AU to 8.5 AU during this time. The brightness of the coma was found to rapidly decrease in 1988 as the coma and cometary activity collapses. The magnitude in April 1988 was 19 mag (visual) and it is predicted that the nucleus itself will be the major contributor to the brightness in the 1988 and 1989 season
    corecore