5 research outputs found
The Bioactivities and Chemical Profile of Turnip-Rooted Parsley Germplasm
In the present study, the chemical profile and bioactive properties of the roots of turnip-rooted parsley (Petroselinum crispum spp. tuberosum) germplasm were evaluated. For this purpose, plants from seventeen parsley cultivars were grown in 6 L pots, and the obtained roots were analyzed in terms of nutritional value, chemical composition (tocopherols, sugars and organic and fatty acids) and bioactive content (antioxidant activity, phenolic compound composition and antimicrobial properties). Our results showed great variability in terms of the chemical composition and bioactive properties of root parsley germplasm. A higher fresh root yield was recorded for the common “Root parsley” common variety (164 g/pot), followed by the varieties “Osborne” (109 g/pot), “Sonata” (104 g/pot), “Kaśka” (104 g/pot) and “Halblange Berlinska” (103 g/pot), whereas the lowest yield was recorded for the “Hanacka” variety (69 g/pot). A significant variation was also observed in the nutritional value parameters: the roots of the “Sonata” genotype showed the highest fat content; “Arat”, “Osborne” and “Olomuńcka” had the highest ash content; the “Alba” cultivar contained significantly higher amounts of carbohydrates; and the “Vistula” cultivar showed the highest energetic value. The only detected isoforms of vitamin E were α- and δ-tocopherols; content varied depending on the cultivar, although α-tocopherol was the most abundant compound in most cultivars, especially in the “Arat” cultivar. Sucrose was the most abundant free sugar detected, especially in the “Sonata” cultivar (16.96 g/100 g dw), followed by apiose (2.93–5.55 g/100 g dw), glucose (1.3–3.47 g/100 g dw) and fructose (1.37–3.03 g/100 g dw). Moreover, malic acid was the most abundant organic acid in most of the tested cultivars. Twenty-one individual fatty acids were identified in all the studied cultivars, with linoleic (47.9–57.1%) and palmitic acid (20.66–20.5%) being the most abundant. Nineteen individual phenolic compounds were tentatively identified, including three phenolic acids, fourteen flavonoids and two hydrolyzable tannins, while apigenin-O-pentoside-O-hexoside was the most abundant. The antioxidant activity differed between the tested assays (TBARS and OxHLIA), and the most effective cultivars for the TBARS assay (“Root parsley (common variety)” and “Berlinski Halblange Springer”) were those with the lowest antioxidant activity for the OxHLIA assay after 120 min. Finally, in most cases, the root extracts were more efficient or similarly effective compared to the positive controls against the tested bacteria and fungi. In conclusion, our results provide information regarding the chemical characterization and the bioactivities of the roots of turnip-rooted parsley germplasm that could be further exploited in sustainable and diversified agro-ecosystems through the introduction of this species as a novel/complementary crop in the traditional farming systems of the Mediterranean basin. © 2022 by the authors
Chemical composition and bioactive properties of purple french bean (Phaseolus vulgaris l.) as affected by water deficit irrigation and biostimulants application
Biostimulants are a novel and eco-friendly agronomic tool with practical applications in alleviating negative effects of environmental stressors. The present work studied the effects of three biostimulant products (Nomoren (N), Twin-Antistress (TW), and X-Stress (XS)) under normal irrigation (W+) and water deficit irrigation conditions (W-) on the nutritional, chemical composition and bioactive properties of common bean fresh pods. A variable effect of biostimulants and water deficit irrigation was observed on nutritional value parameters, while fructose and sucrose were the main detected sugars, especially in NW+ and CW-treatments. Oxalic, malic, and citric acid were the main detected organic acids, while γ-and total tocopherol content was the highest in TWW+. (+)-Catechin and (-)-epicatechin were the most abundant phenolic compounds, especially in the NW-treatment. A variable antioxidant capacity was observed for the Thiobarbituric Acid Reactive Substances (TBARS) and Oxidative Haemolysis assays (OxHLIA), while TWW+ extracts showed the best overall results against the tested fungi. In conclusion, the tested biostimulants had a positive effect on chemical composition and bioactivities of purple bean depending on the irrigation regime. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
Bioactive properties of Sanguisorba minor L. cultivated in central Greece under different fertilization regimes
In this study, the chemical characterization and bioactive properties of S. minor cultivated under different fertilization rates (control, half rate and full rate) were evaluated. Twenty-two phenolic compounds were identified, including five phenolic acids, seven flavonoids and ten tannins. Hydrolysable tannins were prevalent, namely Sanguiin H-10, especially in leaves without fertilization (control). Roots of full-rate fertilizer (660 Kg/ha) presented the highest flavonoid content, mainly catechin and its isomers, whereas half-rate fertilizer (330 Kg/ha), presented the highest content of total phenolic compounds, due to the higher amount of ellagitannins (lambertianin C: 84 ± 1 mg/g of dry extract). Antimicrobial activities were also promising, especially against Salmonella typhimurium (MBC = 0.44 mg/mL). Moreover, root samples revealed activity against all tested cell lines regardless of fertilization rate, whereas leaves were effective only against HeLa cell line. In conclusion, S. minor could be a source of natural bioactive compounds, while fertilization could increase phenolic compounds content. © 2020 Elsevier Lt