4,174 research outputs found

    The Outbursts and Orbit of the Accreting Pulsar GS 1843-02 = 2S 1845-024

    Get PDF
    We present observations of a series of 10 outbursts of pulsed hard X-ray flux from the transient 10.6 mHz accreting pulsar GS 1843-02, using the Burst and Transient Source Experiment on the Compton Gamma Ray Observatory. These outbursts occurred regularly every 242 days, coincident with the ephemeris of the periodic transient GRO J1849-03 (Zhang et al. 1996), which has recently been identified with the SAS 3 source 2S 1845-024 (Soffitta et al. 1998). Our pulsed detection provides the first clear identification of GS 1843-02 with 2S 1845-024. We present a pulse timing analysis which shows that the 2S 1845-024 outbursts occur near the periastron passage of the neutron star's highly eccentric (e = 0.88+-0.01) 242.18+-0.01 day period binary orbit about a high mass (M > 7 solar masses) companion. The orbit and transient outburst pattern strongly suggest the pulsar is in a binary system with a Be star. Our observations show a long-term spin-up trend, with most of the spin-up occurring during the outbursts. From the measured spin-up rates and inferred luminosities we conclude that an accretion disk is present during the outbursts.Comment: Accepted for publication in Astrophysical Journa

    Dust-Gas Scaling Relations and OH Abundance in the Galactic ISM

    Get PDF
    Observations of interstellar dust are often used as a proxy for total gas column density NHN_\mathrm{H}. By comparing Planck\textit{Planck} thermal dust data (Release 1.2) and new dust reddening maps from Pan-STARRS 1 and 2MASS (Green et al. 2018), with accurate (opacity-corrected) HI column densities and newly-published OH data from the Arecibo Millennium survey and 21-SPONGE, we confirm linear correlations between dust optical depth τ353\tau_{353}, reddening E(B−V)E(B{-}V) and the total proton column density NHN_\mathrm{H} in the range (1−-30)×\times1020^{20}cm−2^{-2}, along sightlines with no molecular gas detections in emission. We derive an NHN_\mathrm{H}/E(B−V)E(B{-}V) ratio of (9.4±\pm1.6)×\times1021^{21}cm−2^{-2}mag−1^{-1} for purely atomic sightlines at ∣b∣|b|>>5∘^{\circ}, which is 60%\% higher than the canonical value of Bohlin et al. (1978). We report a ∼\sim40%\% increase in opacity σ353\sigma_{353}=τ353\tau_{353}/NHN_\mathrm{H}, when moving from the low column density (NHN_\mathrm{H}<<5×\times1020^{20}cm−2^{-2}) to moderate column density (NHN_\mathrm{H}>>5×\times1020^{20}cm−2^{-2}) regime, and suggest that this rise is due to the evolution of dust grains in the atomic ISM. Failure to account for HI opacity can cause an additional apparent rise in σ353\sigma_{353}, of the order of a further ∼\sim20%\%. We estimate molecular hydrogen column densities NH2N_{\mathrm{H}_{2}} from our derived linear relations, and hence derive the OH/H2_2 abundance ratio of XOHX_\mathrm{OH}∼\sim1×\times10−7^{-7} for all molecular sightlines. Our results show no evidence of systematic trends in OH abundance with NH2N_{\mathrm{H}_{2}} in the range NH2N_{\mathrm{H}_{2}}∼\sim(0.1−-10)×\times1021^{21}cm−2^{-2}. This suggests that OH may be used as a reliable proxy for H2_2 in this range, which includes sightlines with both CO-dark and CO-bright gas.Comment: The revised manuscript is accepted for publication in The Astrophysical Journa

    Special relativity constraints on the effective constituent theory of hybrids

    Get PDF
    We consider a simplified constituent model for relativistic strong-interaction decays of hybrid mesons. The model is constructed using rules of renormalization group procedure for effective particles in light-front quantum field theory, which enables us to introduce low-energy phenomenological parameters. Boost covariance is kinematical and special relativity constraints are reduced to the requirements of rotational symmetry. For a hybrid meson decaying into two mesons through dissociation of a constituent gluon into a quark-anti-quark pair, the simplified constituent model leads to a rotationally symmetric decay amplitude if the hybrid meson state is made of a constituent gluon and a quark-anti-quark pair of size several times smaller than the distance between the gluon and the pair, as if the pair originated from one gluon in a gluonium state in the same effective theory.Comment: 11 pages, 5 figure

    Is TrpM5 a reliable marker for chemosensory cells? Multiple types of microvillous cells in the main olfactory epithelium of mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the past, ciliated receptor neurons, basal cells, and supporting cells were considered the principal components of the main olfactory epithelium. Several studies reported the presence of microvillous cells but their function is unknown. A recent report showed cells in the main olfactory epithelium that express the transient receptor potential channel TrpM5 claiming that these cells are chemosensory and that TrpM5 is an intrinsic signaling component of mammalian chemosensory organs. We asked whether the TrpM5-positive cells in the olfactory epithelium are microvillous and whether they belong to a chemosensory system, i.e. are olfactory neurons or trigeminally-innervated solitary chemosensory cells.</p> <p>Results</p> <p>We investigated the main olfactory epithelium of mice at the light and electron microscopic level and describe several subpopulations of microvillous cells. The ultrastructure of the microvillous cells reveals at least three morphologically different types two of which express the TrpM5 channel. None of these cells have an axon that projects to the olfactory bulb. Tests with a large panel of cell markers indicate that the TrpM5-positive cells are not sensory since they express neither neuronal markers nor are contacted by trigeminal nerve fibers.</p> <p>Conclusion</p> <p>We conclude that TrpM5 is not a reliable marker for chemosensory cells. The TrpM5-positive cells of the olfactory epithelium are microvillous and may be chemoresponsive albeit not part of the sensory apparatus. Activity of these microvillous cells may however influence functionality of local elements of the olfactory system.</p

    Dust–Gas Scaling Relations and OH Abundance in the Galactic ISM

    Get PDF
    Observations of interstellar dust are often used as a proxy for total gas column density NH. By comparing Planck thermal dust data (Release 1.2) and new dust reddening maps from Pan-STARRS 1 and 2MASS, with accurate (opacity-corrected) H I column densities and newly published OH data from the Arecibo Millennium survey and 21-SPONGE, we confirm linear correlations between dust optical depth τ353, reddening E(B − V), and the total proton column density NH in the range (1–30) × 1020 cm−2, along sightlines with no molecular gas detections in emission. We derive an NH/E(B − V) ratio of (9.4 ± 1.6) × 1021 cm−2 mag−1 for purely atomic sightlines at |b| \u3e 5°, which is 60% higher than the canonical value of Bohlin et al. We report a ~40% increase in opacity σ353 = τ 353/NH, when moving from the low column density (NH \u3c 5 × 1020 cm−2) to the moderate column density (NH \u3e 5 × 1020 cm−2) regime, and suggest that this rise is due to the evolution of dust grains in the atomic interstellar medium. Failure to account for H I opacity can cause an additional apparent rise in σ353 of the order of a further ~20%. We estimate molecular hydrogen column densities NH2 from our derived linear relations, and hence derive the OH/H2 abundance ratio of XOH ~ 1 × 10−7 for all molecular sightlines. Our results show no evidence of systematic trends in OH abundance with NH2 in the range NH2 ~ (0.1−10) × 1021 cm−2. This suggests that OH may be used as a reliable proxy for H2 in this range, which includes sightlines with both CO-dark and CO-bright gas

    Estimation of GRB detection by FiberGLAST

    Get PDF
    FiberGLAST is one of several instrument concepts being developed for possible inclusion as the primary Gamma-ray Large Area Space Telescope (GLAST) instrument. The predicted FiberGLAST effective area is more than 12,000 cm2 for energies between 30 MeV and 300 GeV, with a field of view that is essentially flat from 0°–80°. The detector will achieve a sensitivity more than 10 times that of EGRET. We present results of simulations that illustrate the sensitivity of FiberGLAST for the detection of gamma-ray bursts

    Discovery of the 18.7-Second Accreting Pulsar GRO J1948+32

    Get PDF
    We have detected an 18.7 s accreting X-ray pulsar in the Cygnus region, using the BATSE large-area detec­tors on the Compton Gamma Ray Observatory. GRO 11948 + 32 has been localized to within 10 deg^2 using a method we developed for positioning weak pulsed sources with BATSE. During the 33 day outburst, the phase-averaged 20-75 keV pulsed flux rose from 25 mCrab to 50 mCrab over 10 days and then decayed below our detection .threshold over nearly 25 days. A photon spectral index of γ = 2.65 ± 0.15 (assuming photon flux density d N/ dE α E^(-γ) was measured during a bright interval. The observed modulation of the neutron star's pulse frequency is suggestive of orbital variation over less than one orbit cycle. Assuming a constant spin frequency derivative over the outburst, we can place the following individual 95% confidence limits on each of the pulsar parameters: orbital period 35d < P_(orb) < 70d; orbital radius 75 It-sec < α_x sin i < 300 It-sec, eccentricity e < 0.25, spin frequency derivative 5 x 10^(-13) Hz s^(-1) < v < 2.5 x 10^(-11) Hz s^(-1), X-ray mass function 0.5 M_⊙ <f_x( M ) < 5 M_⊙ . As the stellar type of the mass-providing companion is still not known for this source, we briefly speculate on the nature of mass transfer in this system
    • …
    corecore