111 research outputs found

    Killing the umpire: cooperative defects in mitotic checkpoint and BRCA2 genes on the road to transformation

    Get PDF
    Recent findings from mouse models of BRCA2 genetic lesions have provided intriguing insights and important questions concerning modes of tumor development in familial breast and ovarian cancers. Fibroblasts from mice homozygous for the BRCA2(Tr) allele grow poorly and display an array of chromosomal abnormalities that are consistent with a role for BRCA2 in DNA repair. This growth defect can be overcome and cellular transformation promoted by the expression of defective, dominant negative alleles of p53 and of the mitotic checkpoint gene Bub1, both of which are known to induce chromosome instability. These findings are mirrored in the genetic lesions sustained in tumors found in the rare BRCA2(Tr/Tr)mice that survive to adulthood, which include defects in p53 as well as the mitotic checkpoint proteins Bub1 and Mad3L. Together, these data hint that tumors in these mice evolve from an unusually intense selective pressure to remove DNA damage checkpoints, which in turn might be facilitated by chromosomal abolition of mitotic checkpoints and the consequent increase in shuffling of genetic information. How these genetic lesions co-operate to yield transformed cells and how these data relate to BRCA1 and BRCA2 defects in the human population are important questions raised by this work

    A Microscopic View on the Mott transition in Chromium-doped V2O3

    Get PDF
    V2O3 is the prototype system for the Mott transition, one of the most fundamental phenomena of electronic correlation. Temperature, doping or pressure induce a metal to insulator transition (MIT) between a paramagnetic metal (PM) and a paramagnetic insulator (PI). This or related MITs have a high technological potential, among others for intelligent windows and field effect transistors. However the spatial scale on which such transitions develop is not known in spite of their importance for research and applications. Here we unveil for the first time the MIT in Cr-doped V2O3 with submicron lateral resolution: with decreasing temperature, microscopic domains become metallic and coexist with an insulating background. This explains why the associated PM phase is actually a poor metal. The phase separation can be associated with a thermodynamic instability near the transition. This instability is reduced by pressure which drives a genuine Mott transition to an eventually homogeneous metallic state.Comment: Paper plus supplementary materia

    Influence of fly ash blending on hydration and physical behavior of Belite-Alite-Ye'elimite cements

    Get PDF
    A cement powder, composed of belite, alite and ye’elimite, was blended with 0, 15 and 30 wt% of fly ash and the resulting lended cements were further characterized. During hydration, the presence of fly ash caused the partial inhibition of both AFt degradation and belite reactivity, even after 180 days. The compressive strength of the corresponding mortars increased by increasing the fly ash content (68, 73 and 82 MPa for mortars with 0, 15 and 30 wt% of fly ash, respectively, at 180 curing days), mainly due to the diminishing porosity and pore size values. Although pozzolanic reaction has not been directly proved there are indirect evidences.This work is part of the Ph.D. of D. Londono-Zuluaga funded by Beca Colciencias 646—Doctorado en el exterior and Enlaza Mundos 2013 program grant. Cement and Building materials group (CEMATCO) from National University of Colombia is acknowledged for providing the calorimetric measurements. Funding from Spanish MINECO BIA2017-82391-R and I3 (IEDI-2016-0079) grants, co-funded by FEDER, are acknowledged

    Thinning regimes and initial spacing for Eucalyptus plantations in Brazil

    Get PDF
    ABSTRACT This study focuses on the effects of different thinning regimes on clonal Eucalyptus plantations growth. Four different trials, planted in 1999 and located in Bahia and Espírito Santo States, were used. Aside from thinning, initial planting density, and post thinning fertilization application were also evaluated. Before canopy closure, and therefore before excessive competition between trees took place, it was found that stands planted under low densities (667 trees per hectare) presented a lower mortality proportion when compared to stand planted under higher densities (1111 trees per hectare). However, diameter growth prior to thinning operations was not statistically different between these two densities, presenting an overall mean of 4.9 cm/year. After canopy closure and the application of the thinning treatments, it was found that thinning regimes beginning early in the life of the stand and leaving a low number of residual trees presented the highest diameter and height growth. Unthinned treatments and thinning regimes late in the life of the stand (after 5.5 years), leaving a large number of residual trees presented the highest values of basal area production. The choice of the best thinning regime for Eucalyptus clonal material will vary according to the plantation objective

    In pursuit of P2X3 antagonists: novel therapeutics for chronic pain and afferent sensitization

    Get PDF
    Treating pain by inhibiting ATP activation of P2X3-containing receptors heralds an exciting new approach to pain management, and Afferent's program marks the vanguard in a new class of drugs poised to explore this approach to meet the significant unmet needs in pain management. P2X3 receptor subunits are expressed predominately and selectively in so-called C- and Aδ-fiber primary afferent neurons in most tissues and organ systems, including skin, joints, and hollow organs, suggesting a high degree of specificity to the pain sensing system in the human body. P2X3 antagonists block the activation of these fibers by ATP and stand to offer an alternative approach to the management of pain and discomfort. In addition, P2X3 is expressed pre-synaptically at central terminals of C-fiber afferent neurons, where ATP further sensitizes transmission of painful signals. As a result of the selectivity of the expression of P2X3, there is a lower likelihood of adverse effects in the brain, gastrointestinal, or cardiovascular tissues, effects which remain limiting factors for many existing pain therapeutics. In the periphery, ATP (the factor that triggers P2X3 receptor activation) can be released from various cells as a result of tissue inflammation, injury or stress, as well as visceral organ distension, and stimulate these local nociceptors. The P2X3 receptor rationale has aroused a formidable level of investigation producing many reports that clarify the potential role of ATP as a pain mediator, in chronic sensitized states in particular, and has piqued the interest of pharmaceutical companies. P2X receptor-mediated afferent activation has been implicated in inflammatory, visceral, and neuropathic pain states, as well as in airways hyperreactivity, migraine, itch, and cancer pain. It is well appreciated that oftentimes new mechanisms translate poorly from models into clinical efficacy and effectiveness; however, the breadth of activity seen from P2X3 inhibition in models offers a realistic chance that this novel mechanism to inhibit afferent nerve sensitization may find its place in the sun and bring some merciful relief to the torment of persistent discomfort and pain. The development philosophy at Afferent is to conduct proof of concept patient studies and best identify target patient groups that may benefit from this new intervention

    HgBa2Ca2Cu3O8+δ

    No full text

    SINGLE: a program to control single-crystal diffractometers

    No full text
    corecore