2,954 research outputs found

    Inertial measurement unit pre-processors and post-flight STS-1 comparisons

    Get PDF
    The flight results show that the relative tri-redundant Inertial Measurement Unit IMU performance throughout the entire entry flight was within the expected accuracy. Comparisons are presented which show differences in the accumulated sensed velocity changes as measured by the tri-redundant IMUs (in Mean Equator and Equinox of 1950.0), differences in the equivalent inertial Euler angles as measured with respect to the M50 system, and finally, preliminary instrument calibrations determined relative to the ensemble average measurement set. Also, differences in the derived body axes rates and accelerations are presented. Because of the excellent performance of the IMUs during the STS-1 entry, the selection as to which particular IMU would best serve as the dynamic data source for entry reconstruction is arbitrary

    Formulation of additional observables for ENTREE

    Get PDF
    The S-band X and Y angles, SAMS, and TACAN range and bearing were incorporated into the ENTREE software for use by experimenters at LaRC for entry trajectory reconstruction purposes. Background discussions present the need for this added capability. Formulations for the various observables are presented. Both north-south and east-west antenna mounts were provided for in the S-band angle computations. Sub-vehicle terrain height variations are included in the SAMS model. Local magnetic variations were incorporated for the TACAN bearing computations. Observable formulations are discussed in detail along with the partial computations

    Shuttle derived atmospheric density model. Part 2: STS atmospheric implications for AOTV trajectory analysis, a proposed GRAM perturbation density model

    Get PDF
    A perturbation model to the Marshall Space Flight Center (MSFC) Global Reference Atmosphere Model (GRAM) was developed for use in the Aeroassist Orbital Transfer Vehicle (AOTV) trajectory and analysis. The model reflects NASA Space Shuttle experience over the first twelve entry flights. The GRAM was selected over the Air Force 1978 Reference Model because of its more general formulation and wider use throughout NASA. The add-on model, a simple scaling with altitude to reflect density structure encountered by the Shuttle Orbiter was selected principally to simplify implementation. Perturbations, by season, can be utilized to minimize the number of required simulations, however, exact Shuttle flight history can be exercised using the same model if desired. Such a perturbation model, though not meteorologically motivated, enables inclusion of High Resolution Accelerometer Package (HiRAP) results in the thermosphere. Provision is made to incorporate differing perturbations during the AOTV entry and exit phases of the aero-asist maneuver to account for trajectory displacement (geographic) along the ground track

    Shuttle derived atmospheric density model. Part 1: Comparisons of the various ambient atmospheric source data with derived parameters from the first twelve STS entry flights, a data package for AOTV atmospheric development

    Get PDF
    The ambient atmospheric parameter comparisons versus derived values from the first twelve Space Shuttle Orbiter entry flights are presented. Available flights, flight data products, and data sources utilized are reviewed. Comparisons are presented based on remote meteorological measurements as well as two comprehensive models which incorporate latitudinal and seasonal effects. These are the Air Force 1978 Reference Atmosphere and the Marshall Space Flight Center Global Reference Model (GRAM). Atmospheric structure sensible in the Shuttle flight data is shown and discussed. A model for consideration in Aero-assisted Orbital Transfer Vehicle (AOTV) trajectory analysis, proposed to modify the GRAM data to emulate Shuttle experiments

    Reconstruction of the 1st Space Shuttle (STS-1) entry trajectory

    Get PDF
    A discussion of the generation of the best estimate trajectory (BET) of the first Space Shuttle Orbiter entry flight is presented. The BET defines a time history of the state, attitude, and atmospheric relative parameters throughout the Shuttle entry from an altitude of approximately 183 km to rollout. The inertial parameters were estimated utilizing a weighted least squares batch filter algorithm. Spacecraft angular rate and acceleration data derived from the Inertial Measurement Unit were utilized to predict the state and attitude which was constrained in a weighted least squares process to fit external tracking data consisting of ground based S-band and C-band data. Refined spacecraft altitude and velocity during and post rollout were obtained by processing artificial altimeter and Doppler data. The BET generation process is discussed. Software and data interface discussions are included. The variables and coordinate systems utilized are defined. STS-1 mission peculiar inputs are summarized. A listing of the contents of the actual BET is provided

    Summary of shuttle data processing and aerodynamic performance comparisons for the first 11 flights

    Get PDF
    NASA Space Shuttle aerodynamic and aerothermodynamic research is but one part of the most comprehensive end-to-end flight test program ever undertaken considering: the extensive pre-flight experimental data base development; the multitude of spacecraft and remote measurements taken during entry flight; the complexity of the Orbiter aerodynamic configuration; the variety of flight conditions available across the entire speed regime; and the efforts devoted to flight data reduction throughout the aerospace community. Shuttle entry flights provide a wealth of research quality data, in essence a veritable flying wind tunnel, for use by researchers to verify and improve the operational capability of the Orbiter and provide data for evaluations of experimental facilities as well as computational methods. This final report merely summarizes the major activities conducted by the AMA, Inc. under NASA Contract NAS1-16087 as part of that interesting research. Investigators desiring more detailed information can refer to the glossary of AMA publications attached herein as Appendix A. Section I provides background discussion of software and methodology development to enable Best Estimate Trajectory (BET) generation. Actual products generated are summarized in Section II as tables which completely describe the post-flight products available from the first three-year Shuttle flight history. Summary results are presented in Section III, with longitudinal performance comparisons included as Appendices for each of the flights

    STS-8 bet results

    Get PDF
    The final Best Estimate Trajectory (BET) products, i.e., the reconstructed trajectory, the Extended BET, AEROBET and MMLE input files, generated for the eighth NASA Space Shuttle flight are documented. The reconstructed trajectory (inertial BET) for this Challenger flight, the first night landing is discussed. State (position, velocity, and attitude) plus three accelerometer scale factors were determined from fitting the Guam S-band data, seven C-band passes, and pseudo Doppler and altimeter during rollout on Runway 22. The anchor epoch utilized for the batch weighted-least-squares determination was Sept. 5, 1983 7h1m50s.0 (25310 GMT seconds). The spacecraft altitude at epoch is approx. 617 kft. IMU2 data were selected for the reconstruction

    Subsonic Longitudinal Performance Coefficient Extraction from Shuttle Flight Data: an Accuracy Assessment for Determination of Data Base Updates

    Get PDF
    Longitudinal performance comparisons between flight derived and predicted values are presented for the first five NASA Space Shuttle Columbia flights. Though subsonic comparisons are emphasized, comparisons during the transonic and low supersonic regions of flight are included. Computed air data information based on the remotely sensed atmospheric measurements as well as in situ Orbiter Air Data System (ADS) measurements were incorporated. Each air data source provides for comparisons versus the predicted values from the LaRC data base. Principally, L/D, C sub L, and C sub D, comparisons are presented, though some pitching moment results are included. Similarities in flight conditions and spacecraft configuration during the first five flights are discussed. Contributions from the various elements of the data base are presented and the overall differences observed between the flight and predicted values are discussed in terms of expected variations. A discussion on potential data base updates is presented based on the results from the five flights to date

    STS-13 (41-C) BET products

    Get PDF
    Results from the STS-13 (41-C) Shuttle entry flight are presented. The entry trajectory was reconstructed from an altitude of 700 kft through rollout on Runway 17 at EAFB. The anchor epoch utilized was April 13, 1984 13(h)1(m)30.(s)0 (46890(s).0) GMT. The final reconstructed inertial trajectory for this flight is BT13M23 under user catalog 169750N. Trajectory reconstruction and Extended BET development are discussed in Section 1 and 2, respectively. The NOAA totem-pole atmosphere extracted from the JSC/TRW BET was adopted in the development of the LaRC Extended BET, namely ST13BET/UN=274885C. The Aerodynamic BET was generated on physical nine track reel NC0728 with a duplicate copy on NC0740 for back-up. Plots of the more relevant parameters from the AEROBET are presented in Section 3. Section 4 discusses the MMLE input files created for STS-13. Appendices are attached which present spacecraft and physical constants utilized (Appendix A), residuals by station and data type (Appendix B), a two second spaced listing of trajectory and air data parameters (Appendix C), and input and output source products for archival (Appendix D)
    corecore