758 research outputs found
Existence of Many Positive Nonradial Solutions for a Superlinear Dirichlet Problem on thin Annuli
We study the existence of many positive nonradial solutions of a superlinear Dirichlet problem in an annulus in RN. Our strategy consists of finding the minimizer of the energy functional restricted to the Nehrai manifold of a subspace of functions with symmetries. The minimizer is a global critical point and therefore is a desired solution. Then we show that the minimal energy solutions in different symmetric classes have mutually different energies. The same approach has been used to prove the existence of many sign-changing nonradial solutions (see [5])
Making a mark on the farm: the marks and traces of farm animals and infectious diseases in northern England
\ua9 2024 Royal Scottish Geographical Society. Farmed animals are expected to move through farmed spaces in certain ways to maximise their productivity. These spaces are also designed to limit the movement of disease-causing organisms. However, both types of lifeforms do not always move in expected ways. We focus on the mark-making of these organisms to explore: 1) the evidence of their movements through farm spaces; and 2) the effects of these movements on managing farm animal disease. We explore these questions via social-scientific and artistic practices. The social science draws on in-depth interviews with UK cattle and sheep farmers, and farm advisors. The artistic component draws on work conducted by an ‘artist in residence\u27 engaging with farm animals and farmer-livestock relationships. Farm animals and infectious micro-organisms were found to move in different ways and create different marks and traces across farms, bodies, and how diseases were managed. These lifeforms often frustrated biosecurity practices of exclusion and enclosure and existed on a spectrum of disease risk. Human actors needed to learn to become attuned to lifeform movements in order to enact disease management. We conclude by suggesting a continued focus in future social-scientific research on how the ‘sub-animal body\u27 contributes to the enacting of farm disease management
Genetic drug target validation using Mendelian randomisation
Mendelian randomisation (MR) analysis is an important tool to elucidate the causal relevance of environmental and biological risk factors for disease. However, causal inference is undermined if genetic variants used to instrument a risk factor also influence alternative disease-pathways (horizontal pleiotropy). Here we report how the 'no horizontal pleiotropy assumption' is strengthened when proteins are the risk factors of interest. Proteins are typically the proximal effectors of biological processes encoded in the genome. Moreover, proteins are the targets of most medicines, so MR studies of drug targets are becoming a fundamental tool in drug development. To enable such studies, we introduce a mathematical framework that contrasts MR analysis of proteins with that of risk factors located more distally in the causal chain from gene to disease. We illustrate key model decisions and introduce an analytical framework for maximising power and evaluating the robustness of analyses
Marrow fibrosis associated with a Philadelphia chromosome
Three patients had marked marrow fibrosis and an apparent Philadelphia (Ph) chromosome. Hematologic, cytogenetic, and molecular studies demonstrated the heterogeneity of such cases, including the first example of clinically typical myelofibrosis (MF) associated with a bcr gene rearrangement characteristic of chronic myelogenous leukemia (CML).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30164/1/0000548.pd
The influence of CYP2D6 and CYP2C19 genetic variation on diabetes mellitus risk in people taking antidepressants and antipsychotics
CYP2D6 and CYP2C19 enzymes are essential in the metabolism of antidepressants and antipsychotics. Genetic variation in these genes may increase risk of adverse drug reactions. Antidepressants and antipsychotics have previously been associated with risk of diabetes. We examined whether individual genetic differences in CYP2D6 and CYP2C19 contribute to these effects. We identified 31,579 individuals taking antidepressants and 2699 taking antipsychotics within UK Biobank. Participants were classified as poor, intermediate, or normal metabolizers of CYP2D6, and as poor, intermediate, normal, rapid, or ultra-rapid metabolizers of CYP2C19. Risk of diabetes mellitus represented by HbA1c level was examined in relation to the metabolic phenotypes. CYP2D6 poor metabolizers taking paroxetine had higher Hb1Ac than normal metabolizers (mean difference: 2.29 mmol/mol; p < 0.001). Among participants with diabetes who were taking venlafaxine, CYP2D6 poor metabolizers had higher HbA1c levels compared to normal metabolizers (mean differences: 10.15 mmol/mol; p < 0.001. Among participants with diabetes who were taking fluoxetine, CYP2D6 intermediate metabolizers and decreased HbA1c, compared to normal metabolizers (mean difference −7.74 mmol/mol; p = 0.017). We did not observe any relationship between CYP2D6 or CYP2C19 metabolic status and HbA1c levels in participants taking antipsychotic medication. Our results indicate that the impact of genetic variation in CYP2D6 differs depending on diabetes status. Although our findings support existing clinical guidelines, further research is essential to inform pharmacogenetic testing for people taking antidepressants and antipsychotics
Natural variation in immune responses to neonatal mycobacterium bovis bacillus calmette-guerin (BCG) vaccination in a cohort of Gambian infants
Background There is a need for new vaccines for tuberculosis (TB) that protect against adult pulmonary disease in regions where BCG is not effective. However, BCG could remain integral to TB control programmes because neonatal BCG protects against disseminated forms of childhood TB and many new vaccines rely on BCG to prime immunity or are recombinant strains of BCG. Interferon-gamma (IFN-) is required for immunity to mycobacteria and used as a marker of immunity when new vaccines are tested. Although BCG is widely given to neonates IFN- responses to BCG in this age group are poorly described. Characterisation of IFN- responses to BCG is required for interpretation of vaccine immunogenicity study data where BCG is part of the vaccination strategy. Methodology/Principal Findings 236 healthy Gambian babies were vaccinated with M. bovis BCG at birth. IFN-, interleukin (IL)-5 and IL-13 responses to purified protein derivative (PPD), killed Mycobacterium tuberculosis (KMTB), M. tuberculosis short term culture filtrate (STCF) and M. bovis BCG antigen 85 complex (Ag85) were measured in a whole blood assay two months after vaccination. Cytokine responses varied up to 10 log-fold within this population. The majority of infants (89-98% depending on the antigen) made IFN- responses and there was significant correlation between IFN- responses to the different mycobacterial antigens (Spearman’s coefficient ranged from 0.340 to 0.675, p=10-6-10-22). IL-13 and IL-5 responses were generally low and there were more non-responders (33-75%) for these cytokines. Nonetheless, significant correlations were observed for IL-13 and IL-5 responses to different mycobacterial antigens Conclusions/Significance Cytokine responses to mycobacterial antigens in BCG-vaccinated infants are heterogeneous and there is significant inter-individual variation. Further studies in large populations of infants are required to identify the factors that determine variation in IFN- responses
Genetic evidence for serum amyloid PÂ component as a drug target in neurodegenerative disorders
The mechanisms responsible for neuronal death causing cognitive loss in Alzheimer's disease (AD) and many other dementias are not known. Serum amyloid P component (SAP) is a constitutive plasma protein, which is cytotoxic for cerebral neurones and also promotes formation and persistence of cerebral Aβ amyloid and neurofibrillary tangles. Circulating SAP, which is produced exclusively by the liver, is normally almost completely excluded from the brain. Conditions increasing brain exposure to SAP increase dementia risk, consistent with a causative role in neurodegeneration. Furthermore, neocortex content of SAP is strongly and independently associated with dementia at death. Here, seeking genomic evidence for a causal link of SAP with neurodegeneration, we meta-analysed three genome-wide association studies of 44 288 participants, then conducted cis-Mendelian randomization assessment of associations with neurodegenerative diseases. Higher genetically instrumented plasma SAP concentrations were associated with AD (odds ratio 1.07, 95% confidence interval (CI) 1.02; 1.11, p = 1.8 × 10-3), Lewy body dementia (odds ratio 1.37, 95%CI 1.19; 1.59, p = 1.5 × 10-5) and plasma tau concentration (0.06 log2(ng l-1) 95%CI 0.03; 0.08, p = 4.55 × 10-6). These genetic findings are consistent with neuropathogenicity of SAP. Depletion of SAP from the blood and the brain, by the safe, well tolerated, experimental drug miridesap may thus be neuroprotective
A nanocommunication system for endocrine diseases
Nanotechnology is a newand very promising area of research which will allow several new applications to be created in different fields, such as, biological, medical, environmental, military, agricultural, industrial and consumer goods. This paper focuses specifically on nanocommunications, which will allow interconnected devices, at the nano-scale, to achieve collaborative tasks, greatly changing the paradigm in the fields described. Molecular communication is a new communication paradigm which allows nanomachines to exchange information using molecules as carrier. This is the most promising nanocommunication method within nanonetworks, since it can use bio-inspired techniques, inherit from studied biological systems, which makes the connection of biologic and man-made systems a easier process. At this point, the biggest challenges in these type of nanocommunication are to establish feasible and reliable techniques that will allow information to be encoded, and mechanisms that ensure a molecular communication between different nodes. This paper focus on creating concepts and techniques to tackle these challenges, and establishing new foundations on which future work can be developed. The created concepts and techniques are then applied in an envisioned medical application, which is based on a molecular nanonetwork deployed inside the Human body. The goal of this medical application is to automatously monitor endocrine diseases using the benefits of nanonetworks, which in turn connects with the internet, thus creating a Internet of NanoThings system. The concepts and techniques developed are evaluated by performing several simulations and comparing with other researches, and the results and discussions are presented on the later sections of this paper
User needs elicitation via analytic hierarchy process (AHP). A case study on a Computed Tomography (CT) scanner
Background:
The rigorous elicitation of user needs is a crucial step for both medical device design and purchasing. However, user needs elicitation is often based on qualitative methods whose findings can be difficult to integrate into medical decision-making. This paper describes the application of AHP to elicit user needs for a new CT scanner for use in a public hospital.
Methods:
AHP was used to design a hierarchy of 12 needs for a new CT scanner, grouped into 4 homogenous categories, and to prepare a paper questionnaire to investigate the relative priorities of these. The questionnaire was completed by 5 senior clinicians working in a variety of clinical specialisations and departments in the same Italian public hospital.
Results:
Although safety and performance were considered the most important issues, user needs changed according to clinical scenario. For elective surgery, the five most important needs were: spatial resolution, processing software, radiation dose, patient monitoring, and contrast medium. For emergency, the top five most important needs were: patient monitoring, radiation dose, contrast medium control, speed run, spatial resolution.
Conclusions:
AHP effectively supported user need elicitation, helping to develop an analytic and intelligible framework of decision-making. User needs varied according to working scenario (elective versus emergency medicine) more than clinical specialization. This method should be considered by practitioners involved in decisions about new medical technology, whether that be during device design or before deciding whether to allocate budgets for new medical devices according to clinical functions or according to hospital department
- …