34 research outputs found

    Purification and G Protein Subunit Regulation of a Phospholipase C-β from Xenopus laevis Oocytes

    Get PDF
    Xenopus oocytes exhibit both pertussis toxin-sensitive and -insensitive inositol lipid signaling responses to G protein-coupled receptor activation. The G protein subunits Galphai, Galphao, Galphaq, Galphas, and Gbetagamma all have been proposed to function as activators of phospholipase C in oocytes. Ma et al. (Ma, H.-W., Blitzer, R. D., Healy, E. C., Premont, R. T., Landau, E. M., and Iyengar, R. J. Biol. Chem. 268, 19915-19918) cloned a Xenopus phospholipase C (PLC-betaX) that exhibits homology to the PLC-beta class of isoenzymes. Although this enzyme was proposed to function as a signaling protein in the pertussis toxin-sensitive inositol lipid signaling pathway of oocytes, its regulation by G protein subunits has not been directly assessed. As such we have utilized baculovirus-promoted overexpression of PLC-betaX in Sf9 insect cells and have purified a recombinant 150-kDa isoenzyme. PLC-betaX catalyzes hydrolysis of phosphatidylinositol(4,5)bisphosphate and phosphatidylinositol(4)monophosphate, and reaction velocity is dependent on Ca2+. Recombinant PLC-betaX was activated by both Galphaq and Gbetagamma. PLC-betaX exhibited a higher apparent affinity for Galphaq than Gbetagamma, and Galphaq was more efficacious than Gbetagamma at lower concentrations of PLC-betaX. Relative to other PLC-beta isoenzymes, PLC-betaX was less sensitive to stimulation by Galphaq than PLC-beta1 but similar to PLC-beta2 and PLC-betaT. PLC-betaX was more sensitive to stimulation by Gbetagamma than PLC-beta1 but less sensitive than PLC-beta2 and PLC-betaT. In contrast PLC-betaX was not activated by the pertussis toxin substrate G proteins Galphai1, Galphai2, Galphai3, or Galphao. These results are consistent with the idea that PLC-betaX is regulated by alpha-subunits of the Gq family and by Gbetagamma and do not support the idea that alpha-subunits of pertussis toxin-sensitive G proteins are directly involved in regulation of this protein

    Protein Kinase C-Promoted Inhibition of G␣ 11 -Stimulated Phospholipase C-␤ Activity

    Get PDF
    ABSTRACT The effects of protein kinase C (PKC) activation on inositol lipid signaling were examined. Using the turkey erythrocyte model of receptor-regulated phosphoinositide hydrolysis, we developed a membrane reconstitution assay to study directly the effects of activation of PKC on the activities of G␣ 11 , independent of potential effects on the receptor or on PLC-␤. Membranes isolated from erythrocytes pretreated with 4␤-phorbol-12␤-myristate-13␣-acetate (PMA) exhibited a decreased capacity for G␣ 11 -mediated activation of purified, reconstituted PLC-␤1. This inhibitory effect was dependent on both the time and concentration of PMA incubation and occurred as a decrease in the efficacy of GTP␥S for activation of PLC-␤1, both in the presence and absence of agonist; no change in the apparent affinity for the guanine nucleotide occurred. Similar inhibitory effects were observed after treatment with the PKC activator phorbol-12,13-dibutyrate but not after treatment with an inactive phorbol ester. The inhibitory effects of PMA were prevented by coaddition of the PKC inhibitor bisindolylmaleimide. Although the effects of PKC could be localized to the membrane, no phosphorylation of G␣ 11 occurred either in vitro in the presence of purified PKC or in intact erythrocytes after PMA treatment. These results support the hypothesis that a signaling protein other than G␣ 11 is the target for PKC and that PKCpromoted phosphorylation of this protein results in a phosphorylation-dependent suppression of G␣ 11 -mediated PLC-␤1 activation. Various receptors transduce signals through heterotrimeric G proteins of the G q family, resulting in activation of phospholipase C (PLC)-␤ isoenzymes and subsequent cleavage of membrane phosphatidylinositol(4,5)P 2 [PtdIns(4,5)P 2 ] to the second messengers inositol(1,4,5)P 3 [Ins(1,4,5)P 3 ] and diacylglycerol Agonist-induced desensitization is an important regulatory process in inositol lipid signaling The turkey erythrocyte is a well-characterized model of receptor-promoted inositol phospholipid signaling and is particularly useful because the three primary proteins in the pathway, i.e., the turkey P2Y 1 recepto

    A Guanine Nucleotide-independent Inwardly Rectifying Cation Permeability Is Associated with P2Y 1 Receptor Expression in Xenopus Oocytes

    Get PDF
    The functional properties of the G protein-coupled P2Y1 receptor were investigated in Xenopus oocytes. Incubation of oocytes expressing either the human or turkey P2Y1 receptor with adenine nucleotide agonists resulted in an increase in Cl- current and activation of a novel cation current with an inwardly rectifying current-voltage relationship. Activation of either the human P2Y2 (P2U-purinergic) or M1 muscarinic receptor expressed in oocytes resulted in an increase in Cl- current similar to that observed in P2Y1 receptor-expressing oocytes but had no effect on cation current. P2 receptor agonists stimulated both the cation current and Cl- current in P2Y1 receptor-expressing oocytes with EC50 values and an order of potency (2-methylthioadenosine diphosphate > 2-methylthioadenosine triphosphate (2MeSATP) > ATP > UTP) that were similar to those previously observed for activation of phospholipase C in 1321N1 human astrocytoma cells stably expressing the human or turkey P2Y1 receptor. The P2Y receptor antagonists suramin and pyridoxal phosphate 6-azophenyl-2'-4'-disulfonic acid both shifted to the right the concentration-response relationship for 2MeSATP for stimulation of oocyte currents. Although injection of oocytes with either GDPbetaS (guanyl-5'-yl thiophosphate) or GTPgammaS (guanosine 5'-3-O-(thio)triphosphate) resulted in loss of adenine nucleotide-promoted Cl- channel activation, neither guanine nucleotide altered the 2MeSATP-stimulated cation current. These data are consistent with the view that activation of the novel cation current by the P2Y1 receptor does not involve a G protein. Tail current analysis of the novel P2Y1 receptor-associated cation conductance revealed that the open channel current-voltage relationship was outwardly rectifying with a reversal potential of -38 mV for the turkey P2Y1 receptor and -36 mV for the human P2Y1 receptor. Replacement of Na+ with K+ ions in the bathing solution produced a shift in reversal potential to near zero mV, but significant outward rectification remained. The cation current was not permeable to either Ca2+ or Ba2+ and exhibited steady-state inactivation at holding potentials below -60 mV. These results indicate that the P2Y1 receptor exhibits both metabotropic properties and a novel G protein-independent ionotropic response when expressed in Xenopus oocytes

    A de novo substitution in BCL11B leads to loss of interaction with transcriptional complexes and craniosynostosis

    Get PDF
    Craniosynostosis, the premature ossification of cranial sutures, is a developmental disorder of the skull vault, occurring in approximately 1 in 2250 births. The causes are heterogeneous, with a monogenic basis identified in ~25% of patients. Using whole-genome sequencing, we identified a novel, de novo variant in BCL11B, c.7C>A, encoding an R3S substitution (p.R3S), in a male patient with coronal suture synostosis. BCL11B is a transcription factor that interacts directly with the nucleosome remodelling and deacetylation complex (NuRD) and polycomb-related complex 2 (PRC2) through the invariant proteins RBBP4 and RBBP7. The p.R3S substitution occurs within a conserved amino-terminal motif (RRKQxxP) of BCL11B and reduces interaction with both transcriptional complexes. Equilibrium binding studies and molecular dynamics simulations show that the p.R3S substitution disrupts ionic coordination between BCL11B and the RBBP4-MTA1 complex, a subassembly of the NuRD complex, and increases the conformational flexibility of Arg-4, Lys-5 and Gln-6 of BCL11B. These alterations collectively reduce the affinity of BCL11B p.R3S for the RBBP4-MTA1 complex by nearly an order of magnitude. We generated a mouse model of the BCL11B p.R3S substitution using a CRISPR-Cas9-based approach, and we report herein that these mice exhibit craniosynostosis of the coronal suture, as well as other cranial sutures. This finding provides strong evidence that the BCL11B p.R3S substitution is causally associated with craniosynostosis and confirms an important role for BCL11B in the maintenance of cranial suture patency

    Impairment of the Plasmodium falciparum Erythrocytic Cycle Induced by Angiotensin Peptides

    Get PDF
    Plasmodium falciparum causes the most serious complications of malaria and is a public health problem worldwide with over 2 million deaths each year. The erythrocyte invasion mechanisms by Plasmodium sp. have been well described, however the physiological aspects involving host components in this process are still poorly understood. Here, we provide evidence for the role of renin-angiotensin system (RAS) components in reducing erythrocyte invasion by P. falciparum. Angiotensin II (Ang II) reduced erythrocyte invasion in an enriched schizont culture of P. falciparum in a dose-dependent manner. Using mass spectroscopy, we showed that Ang II was metabolized by erythrocytes to Ang IV and Ang-(1–7). Parasite infection decreased Ang-(1–7) and completely abolished Ang IV formation. Similar to Ang II, Ang-(1–7) decreased the level of infection in an A779 (specific antagonist of Ang-(1–7) receptor, MAS)-sensitive manner. 10−7 M PD123319, an AT2 receptor antagonist, partially reversed the effects of Ang-(1–7) and Ang II. However, 10−6 M losartan, an antagonist of the AT1 receptor, had no effect. Gs protein is a crucial player in the Plasmodium falciparum blood cycle and angiotensin peptides can modulate protein kinase A (PKA) activity; 10−8 M Ang II or 10−8 M Ang-(1–7) inhibited this activity in erythrocytes by 60% and this effect was reversed by 10−7 M A779. 10−6 M dibutyryl-cAMP increased the level of infection and 10−7 M PKA inhibitor decreased the level of infection by 30%. These results indicate that the effect of Ang-(1–7) on P. falciparum blood stage involves a MAS-mediated PKA inhibition. Our results indicate a crucial role for Ang II conversion into Ang-(1–7) in controlling the erythrocytic cycle of the malaria parasite, adding new functions to peptides initially described to be involved in the regulation of vascular tonus

    Impairment of the Plasmodium falciparum Erythrocytic Cycle Induced by Angiotensin Peptides

    Get PDF
    Plasmodium falciparum causes the most serious complications of malaria and is a public health problem worldwide with over 2 million deaths each year. The erythrocyte invasion mechanisms by Plasmodium sp. have been well described, however the physiological aspects involving host components in this process are still poorly understood. Here, we provide evidence for the role of renin-angiotensin system (RAS) components in reducing erythrocyte invasion by P. falciparum. Angiotensin II (Ang II) reduced erythrocyte invasion in an enriched schizont culture of P. falciparum in a dose-dependent manner. Using mass spectroscopy, we showed that Ang II was metabolized by erythrocytes to Ang IV and Ang-(1–7). Parasite infection decreased Ang-(1–7) and completely abolished Ang IV formation. Similar to Ang II, Ang-(1–7) decreased the level of infection in an A779 (specific antagonist of Ang-(1–7) receptor, MAS)-sensitive manner. 10−7 M PD123319, an AT2 receptor antagonist, partially reversed the effects of Ang-(1–7) and Ang II. However, 10−6 M losartan, an antagonist of the AT1 receptor, had no effect. Gs protein is a crucial player in the Plasmodium falciparum blood cycle and angiotensin peptides can modulate protein kinase A (PKA) activity; 10−8 M Ang II or 10−8 M Ang-(1–7) inhibited this activity in erythrocytes by 60% and this effect was reversed by 10−7 M A779. 10−6 M dibutyryl-cAMP increased the level of infection and 10−7 M PKA inhibitor decreased the level of infection by 30%. These results indicate that the effect of Ang-(1–7) on P. falciparum blood stage involves a MAS-mediated PKA inhibition. Our results indicate a crucial role for Ang II conversion into Ang-(1–7) in controlling the erythrocytic cycle of the malaria parasite, adding new functions to peptides initially described to be involved in the regulation of vascular tonus

    Characterisation of P2Y 2

    No full text
    corecore