853 research outputs found

    Clinical and biochemical improvements in a patient with MNGIE following enzyme replacement.

    Get PDF
    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare autosomal recessive metabolic disorder caused by a deficiency of thymidine phosphorylase (TP, EC2.4.2.4) due to mutations in the nuclear gene TYMP. TP deficiency leads to plasma and tissue accumulations of thymidine and deoxyuridine which generate imbalances within the mitochondrial nucleotide pools, ultimately leading to mitochondrial dysfunction.1 MNGIE is characterized clinically by leukoencephalopathy, external ophthalmoplegia, peripheral polyneuropathy, cachexia, and enteric neuromyopathy manifesting as gastrointestinal dysmotility. The condition is relentlessly progressive, with patients usually dying from a combination of nutritional and neuromuscular failure at an average age of 37 years.2 Allogeneic hematopoietic stem cell transplantation (AHSCT) offers a permanent cure. Clinical and biochemical improvements following AHSCT have been reported but it carries a high mortality risk and is limited by matched donor availability.3 A consensus proposal for standardizing AHSCT recommends treatment of patients without irreversible end-stage disease and with an optimally matched donor; a majority of patients are ineligible and thus there is a critical requirement for an alternative treatment

    Poor Outcome in a Mitochondrial Neurogastrointestinal Encephalomyopathy Patient with a Novel TYMP Mutation: The Need for Early Diagnosis.

    Get PDF
    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a devastating autosomal recessive disorder due to mutations in TYMP, which cause loss of function of thymidine phosphorylase (TP), nucleoside accumulation in plasma and tissues and mitochondrial dysfunction. The clinical picture includes progressive gastrointestinal dysmotility, cachexia, ptosis and ophthalmoparesis, peripheral neuropathy and diffuse leukoencephalopathy, which usually lead to death in early adulthood. Therapeutic options are currently available in clinical practice (allogeneic hematopoietic stem cell transplantation and carrier erythrocyte entrapped TP therapy) and newer, promising therapies are expected in the near future. However, successful treatment is strictly related to early diagnosis. We report on an incomplete MNGIE phenotype in a young man harboring the novel heterozygote c.199 C>T (Q67X) mutation in exon 2, and the previously reported c.866 A>C (E289A) mutation in exon 7 in TYMP. The correct diagnosis was achieved many years after the onset of symptoms and unfortunately, the patient died soon after diagnosis because of multiorgan failure due to severe malnutrition and cachexia before any therapeutic option could be tried. To date, early diagnosis is essential to ensure that patients have the opportunity to be treated. MNGIE should be suspected in all patients who present with both gastrointestinal and nervous system involvement, even if the classical complete phenotype is lacking

    Apoptosis during early development of sea urchin.

    Get PDF
    Apoptosis is a genetic program of cell death that eliminates superfluous or compromised cells during development and adult life of many organisms. In sea urchin embryos, apoptosis is not only a physiological event during larval metamorphosis, but also a process induced by cadmium accumulation or other stressor like TPA (12-O-tetradecanoylphorbol-13-acetate) followed by an increase of temperature to 31°C. Apoptosis is a highly conserved process usually operated by a proteolytic cascade that involves caspase activation by two different pathways: extrinsic and intrinsic. The first one involves membrane death receptors, while the second involves mitochondria. In this work we analyzed the possible involvement of extrinsic and intrinsic apoptotic pathways in physiological and stressful conditions in Paracentrotus lividus embryos. By fluorescent TUNEL assays we demonstrate that apoptosis is part of cadmium and TPA+31°C stress response. We find that Cd and TPA+31°C treatments induce apoptosis through caspase-3 activation, while caspase-7 is the main effector of physiological apoptosis. Caspase-10 is active only in physiological apoptosis, while caspase-8 is mainly involved in stress-induced apoptosis. In addition, we did not find any involvement of mitochondria. Moreover we observed, in Cd-treated embryos, a Reactive Oxygen Species (ROS) increase, that could be related to the induction of apoptosis

    Exercise Combined with Electrotherapy Enhances Motor Function in an Adolescent with Spinal Muscular Atrophy Type III

    Get PDF
    Background. Electrotherapy is widely used in physical therapy to increase muscle mass, improve motor function, and assist physical activity in several neurologic conditions. However, concerning Spinal Muscular Atrophy (SMA), limited evidence exists on the role of electrotherapy as an adjunct for improving muscle strength and function. Case Report. An adolescent (13 y.o.) with SMA type III underwent an 18-week strengthening program divided into two stages. During Phase I (weeks: 1-8), a home-based program for quadriceps strengthening through neuromuscular electrical stimulation (NMES) was provided. In Phase II (weeks: 9-18), at-home NMES was combined with functional electrical stimulation (FES) assisting volitional cycling for a broader, systemic conditioning. The treatment improved patient's structural and functional motor outcomes (quadriceps circumference and strength, Tinetti scale, and Hammersmith scale) as well as independence in stair climbing. Clinical Rehabilitation Impact. The purpose of this report is to raise awareness of the potential role of electrotherapy to help improving motor performance in SMA patients and, secondly, to foster further research aimed at assessing the actual contribution this intervention may have as an add-on therapy to existing care
    • …
    corecore