173 research outputs found

    Editorial for Special Issue "Antiprotozoal Activity of Natural Products"

    Get PDF
    Neglected tropical diseases (NTDs), a group of diverse infectious diseases, repre-sent the leading cause of morbidity and mortality among the world's low-income pop-ulations. These diseases are often referred to as "neglected" due to their historical lack of attention from the global health agenda and research investment, with the excep-tion of some important support from the Bill & Melinda Gates Foundation. According to the World Health Organization (WHO), over 1.5 billion people are affected by at least one NTD, causing around 500,000 deaths yearly, social discrimination, and phys-ical suffering. Although NTDs can be found worldwide, they are most prevalent in tropical areas, where factors such as limited access to clean water, favorable environ-mental conditions, and inadequate sanitation expedite their transmission. Among a core group of 20 NTDs and conditions, the infections caused by single-celled protozoan parasites, such as Human African Trypanosomiasis (sleeping sickness or HAT), Chagas disease, Leishmaniasis, and Malaria, are regarded as therapeutically challenging be-cause of their elevated fatality rates and limited treatment options. Even though Malaria is not included in the NTDs’ list, it remains a significant public health issue in many NTD-endemic regions, and it is frequently considered within the framework of initiatives aimed at managing and eradicating NTDs

    Population development and landscape preference of reintroduced wild ungulates: successful rewilding in Southern Italy

    Get PDF
    Background: In the past decades, the abandonment of traditional land use practices has determined landscape changes inducing reforestation dynamics. This phenomenon can be contrasted with rewilding practices, i.e., the reintroduction of animals that may promote the recovery of landscape diversity. In this study, we explore the dynamics of expansion of two reintroduced populations of wild ungulates, Italian roe deer (Capreolus capreolus italicus) and red deer (Cervus elaphus), assessing their contribution in the recovery of landscape diversity. Methods: By using direct and indirect information on the two species, collected by nocturnal and diurnal surveys and camera trapping, we modelled a habitat suitability map, and estimated the density and distribution of the populations. We also performed a land use changes analysis, combining the presence of wild ungulates and livestock. Results and discussion: We demonstrated that deer dispersed gradually from their release location, increasing in population size, and this occurred in the entire study area. Moreover, we show that areas with lower grazing density are significantly affected by forest encroachment. A possible interpretation of this result could be that wild grazers (roe deer and red deer) prefer semi-open areas surrounded by the forest. This, in association with other factors, such as domestic grazing, could be one of the main responsible in maintaining landscape mosaic typical of the Apennine mountain, confirming the value of grazers as a landscape management tool. Moreover, we show the possibility to conserve through reintroduction the vulnerable C.c. italicus

    Oviposition inhibitory activity of the Mexican sunflower Tithonia diversifolia (Asteraceae) polar extracts against the two-spotted spider mite Tetranychus urticae (Tetranychidae)

    Get PDF
    The Mexican sunflower (Tithonia diversifolia, Asteraceae) is an invasive shrub of agricultural and non-agricultural lands in tropical countries. Besides extensive utilizations in the traditional medicine, mainly to treat malaria, the plant is believed to have a great potential in agriculture of developing countries as a green biomass to produce fertilizer, fodder and biopesticides. The plant is known to produce tagitinins, which are sesquiterpene lactones with a bitter taste endowed with toxicity against several insects such as mosquitoes, aphids, and beetles. Here, we evaluated the potential of T. diversifolia against the two-spotted spider mite Tetranychus urticae (Tetranychidae), which is one of the most economically important arthropod pests worldwide. The leaf methanolic extract and its ethyl acetate fraction were tested for acute and chronic toxicity and for oviposition inhibitory effects. The chemical composition of the extracts was analyzed by HPLC-MSn and NMR. The main constituents were flavonoid derivatives, phenylpropanoids and sesquiterpene lactones. Among the latter, tagitinin C and tagitinin A were the major compounds. In acute toxicity assays, mortality did not exceed 50% even for the highest tested dose of 150 \u3bcg cm-3. However, in chronic toxicity assays, on day 5 from application, the methanolic extract LD50 was 41.3 \u3bcg cm-3 while LD90 was 98.7 \u3bcg cm-3. Furthermore, both T. diversifolia extracts inhibited oviposition in T. urticae. The ethyl acetate extract was the most active oviposition inhibitor, with an ED50 value of 44.3 \u3bcg cm-3 and an ED90 of 121.5 \u3bcg cm-3. Overall, the good yield rate of the extract and the high crop yield highlighted good prospects of using the extract from this plant for the development of oviposition inhibitors against mite

    Aniseed, Pimpinella anisum, as a source of new agrochemicals: phytochemistry and insights on insecticide and acaricide development

    Get PDF
    Pimpinella anisum L. (Apiaceae), known around the world as aniseed, is a widely cultivated crop, native of the sub-Mediterranean area. Its essential oil (EO) is exploitable in different fields such as food and beverages, pharmaceutics, cosmetics, and nutraceuticals. Regardless of the geographic origin, the EO exhibited consistent transanethole predominancy. Among the numerous biological properties exerted by aniseed EO, its antimicrobial, antifungal, insecticidal, and acaricidal effects have been extensively investigated for the formulation of biopesticides against larvae and adults of various pests and vectors. Hereafter, the published data on the insecticidal and acaricidal activity of aniseed EO and its major compounds on agricultural pests, stored-product pests, and arthropods of medical and veterinary interest is reviewed. For each study, the arthropod and the developmental stage on which the aniseed EO or the aniseed EO-based formulation were tested, the mode of action, the main constituents, and the exerted mortality, as well as the toxicity to non-target organisms and the possible sub-lethal effects are reported. The advantages of the possible use of aniseed EO as a biopesticide are analysed, as well as the current weaknesses and the critical points to be overcome to open the doors to the industrial utilization of Apiaceae EOs by the agrochemical industry

    BRCA2 Germline Mutations Identify Gastric Cancers Responsive to PARP Inhibitors

    Get PDF
    Mutations; Gastric cancers; PARP inhibitorsMutacions; Càncers gàstrics; Inhibidors de PARPMutaciones; Cánceres gástricos; Inhibidores de PARPDespite negative results of clinical trials conducted on the overall population of patients with gastric cancer, PARP inhibitor (PARPi) therapeutic strategy still might represent a window of opportunity for a subpopulation of patients with gastric cancer. An estimated 7% to 12% of gastric cancers exhibit a mutational signature associated with homologous recombination (HR) failure, suggesting that these patients could potentially benefit from PARPis. To analyze responsiveness of gastric cancer to PARPi, we exploited a gastroesophageal adenocarcinoma (GEA) platform of patient-derived xenografts (PDX) and PDX-derived primary cells and selected 10 PDXs with loss-of-function mutations in HR pathway genes. Cell viability assays and preclinical trials showed that olaparib treatment was effective in PDXs harboring BRCA2 germline mutations and somatic inactivation of the second allele. Olaparib responsive tumors were sensitive to oxaliplatin as well. Evaluation of HR deficiency (HRD) and mutational signatures efficiently stratified responder and nonresponder PDXs. A retrospective analysis on 57 patients with GEA showed that BRCA2 inactivating variants were associated with longer progression-free survival upon platinum-based regimens. Five of 7 patients with BRCA2 germline mutations carried the p.K3326* variant, classified as “benign.” However, familial history of cancer, the absence of RAD51 foci in tumor cells, and a high HRD score suggest a deleterious effect of this mutation in gastric cancer. In conclusion, PARPis could represent an effective therapeutic option for BRCA2-mutated and/or high HRD score patients with GEA, including patients with familial intestinal gastric cancer.This work was funded by the Italian Association for Cancer Research (AIRC), IG 20210 and IG 27531 to S. Giordano; IG 23624 to F. Pietrantonio; IG 21770 to S. Corso. FPRC 5×1000 2015 Min. Salute “Strategy” to SG; Fondazione Piemontese per la Ricerca sul Cancro (FPRC) 5×1000 MS2017 PTCRC-intra 2020 to S. Giordano; Ricerca Locale Dept. Oncology 2021 to S. Corso; Italian Ministry of Health-Ricerca Corrente 2022–23. B. Pellegrino was supported by ESMO with a Clinical Translational Fellowship aid supported by Roche and received research grants from GOIRC. Fondazione CR Firenze to M. Benelli

    Structure/activity virtual screening and in vitro testing of small molecule inhibitors of 8-hydroxy-5-deazaflavin:NADPH oxidoreductase from gut methanogenic bacteria

    Get PDF
    Abstract Virtual screening techniques and in vitro binding/inhibitory assays were used to search within a set of more than 8,000 naturally occurring small ligands for candidate inhibitors of 8-hydroxy-5-deazaflavin:NADPH oxidoreductase (FNO) from Methanobrevibacter smithii, the enzyme that catalyses the bidirectional electron transfer between NADP+ and F420H2 during the intestinal production of CH4 from CO2. In silico screening using molecular docking classified the ligand-enzyme complexes in the range between − 4.9 and − 10.5 kcal/mol. Molecular flexibility, the number of H-bond acceptors and donors, the extent of hydrophobic interactions, and the exposure to the solvent were the major discriminants in determining the affinity of the ligands for FNO. In vitro studies on a group of these ligands selected from the most populated/representative clusters provided quantitative kinetic, equilibrium, and structural information on ligands' behaviour, in optimal agreement with the predictive computational results

    Investigating the phytotoxic potential of Carlina acaulis essential oil against the weed Bidens pilosa through a physiological and metabolomic approach

    Get PDF
    Essential oils (EOs) are widely studied as possible candidates for new eco-friendly herbicides for weed management due to their phytotoxicity. In this study we tested the phytotoxic potential of the EO obtained from the roots of Carlina acaulis L. (Apiaceae) against the weed Bidens pilosa L. This EO, containing 98% of the polyacetylene carlina oxide, showed strong phytotoxic effects on the plant metabolism, such as leaf necrosis, reduction of relative water content and total leaf area, and an increase in the dry weight/fresh weight ratio, suggesting a water status alteration. The EO also damaged the photosynthetic machinery, as evidenced by the significant reduction of the effective quantum yield of photosystem II (ΦII) and the maximum quantum yield of photosystem II (Fv/Fm). In addition, the non-photochemical quenching (ΦNPQ) significantly increased after spraying with C. acaulis EO. Damage to photosystem II was further demonstrated through the reduction of manganese and calcium concentrations, possibly due to an alteration in the correct functionality of the Mn4Ca cluster of the PSII. Metabolomics analysis revealed an accumulation of branched-chain amino acids, such as isoleucine and valine, which is commonly related to osmotic alterations under drought stress situations and a general reduction in sugar content (fructose, glucose, mannose, among others), suggesting reduction of the photosynthetic efficiency too. Overall, these findings suggest C. acaulis EO as a promising natural product with phytotoxic potential against weeds that deserves further investigation

    Lethal and sublethal effects of carlina oxide on Tetranychus urticae (Acari: Tetranychidae) and Neoseiulus californicus (Acari: Phytoseiidae)

    Get PDF
    BACKGROUND: Tetranychus urticae Koch, is a polyphagous and damaging pest, presenting several resistant populations world- wide. Among new and more environmentally friendly control tools, botanical pesticides represent a valuable alternative to syn- thetic ones within integrated pest management strategies. Accordingly, we investigated the lethal and sublethal effects of carlina oxide isolated from Carlina acaulis (Asteraceae) roots on T. urticae and its natural enemy, the predatory mite, Neoseiulus californicus (McGregor). RESULTS: Carlina oxide (98.7% pure compound) was used for acaricidal tests on eggs, nymphs, and adult females of T. urticae (concentrations of 312.5, 625, 1250, 2500 and 5000 !L L!1), and eggs and females of N. californicus (1250 and 5000 !L L!1 on eggs and females, respectively). Behavioral two-choice tests were also conducted on phytoseiid females. Carlina oxide toxicity was higher on T. urticae females than nymphs (median lethal dose 1145 and 1825 !L L!1, respectively), whereas egg mortality and mean hatching time were signi!cantly affected by all tested concentrations. A decreasing daily oviposition rate for T. urticae was recorded with concentrations ranging from 625 to 5000 !L L!1, whereas negative effects on the population growth rate were recorded only with the three higher concentrations (1250, 2500 and 5000 !L L!1). No toxic effect on N. californicus females was found, but a strong repellent activity lasting for 48 h from application was recorded. CONCLUSION: Carlina oxide reduced longevity and fecundity of T. urticae adults, but not of N. californicus. This selective prop- erty allows us to propose it as a novel active ingredient of ecofriendly acaricides for T. urticae management

    Identification of Anti-Neuroinflammatory Bioactive Compounds in Essential Oils and Aqueous Distillation Residues Obtained from Commercial Varieties of Cannabis sativa L

    Get PDF
    Neuroinflammation, which is mainly triggered by microglia, is a key contributor to multiple neurodegenerative diseases. Natural products, and in particular Cannabis sativa L., due to its richness in phytochemical components, represent ideal candidates to counteract neuroinflammation. We previously characterized different C. sativa commercial varieties which showed significantly different chemical profiles. On these bases, the aim of this study was to evaluate essential oils and aqueous distillation residues from the inflorescences of three different hemp varieties for their anti-neuroinflammatory activity in BV-2 microglial cells. Cells were pretreated with aqueous residues or essential oils and then activated with LPS. Unlike essential oils, aqueous residues showed negligible effects in terms of anti-inflammatory activity. Among the essential oils, the one obtained from 'Gorilla Glue' was the most effective in inhibiting pro-inflammatory mediators and in upregulating anti-inflammatory ones through the modulation of the p38 MAPK/NF-kappa B pathway. Moreover, the sesquiterpenes (E)-caryophyllene, alpha-humulene, and caryophyllene oxide were identified as the main contributors to the essential oils' anti-inflammatory activity. To our knowledge, the anti-neuroinflammatory activity of alpha-humulene has not been previously described. In conclusion, our work shows that C. sativa essential oils characterized by high levels of sesquiterpenes can be promising candidates in the prevention/counteraction of neuroinflammation

    The Tumor-Specific Expression of L1 Retrotransposons Independently Correlates with Time to Relapse in Hormone-Negative Breast Cancer Patients

    Get PDF
    Background: Long-Interspersed Nuclear Element (L1) retrotransposons are silenced in healthy tissues but unrepressed in cancer. Even if L1 reactivation has been associated with reduced overall survival in breast cancer (BC) patients, a comprehensive correlation with clinicopathological features is still missing. Methods: Using quantitative, reverse-transcription PCR, we assessed L1 mRNA expression in 12 BC cells, 210 BC patients and in 47 normal mammary tissues. L1 expression was then correlated with molecular and clinicopathological data. Results: We identified a tumor-exclusive expression of L1s, absent in normal mammary cells and tissues. A positive correlation between L1 expression and tumor dedifferentiation, lymph-node involvement and increased immune infiltration was detected. Molecular subtyping highlighted an enrichment of L1s in basal-like cells and cancers. By exploring disease-free survival, we identified L1 overexpression as an independent biomarker for patients with a high risk of recurrence in hormone-receptor-negative BCs. Conclusions: Overall, L1 reactivation identified BCs with aggressive features and patients with a worse clinical fate
    corecore