102 research outputs found

    A new approach to the modeling of SHS reactions: Combustion synthesis of transition metal aluminides

    Get PDF
    A recently developed numerical simulation of self-propagating high-temperature synthesis (SHS) using an approach based on microscopic reaction mechanisms and utilizing appropriate physical parameters is applied to the SHS of a fairly large group of transition metal aluminides. The model was utilized to analyze temperature profiles and wave instability and the results were interpreted in terms of chemical and thermal effects. The effect of the particle size of the transition metal, the porosity of the reactant mixtures, and the dilution was iinvestigated. The results are in good agreement with available experimental data

    Ignition and reaction mechanism of Co-Al and Nb-Al intermetallic compounds prepared by combustion synthesis

    Get PDF
    The ignition and propagation mechanism of the self-propagating high-temperature synthesis of several cobalt and niobium aluminides was investigated. Two propagation mechanisms were identified depending on the stoichiometry of the starting mixture. Al-rich compositions propagate through a dissolution-precipitation mechanism while Al-poor mixtures require solid state diffusion. The ignition temperatures were measured by means of microthermocouples in quasi-adiabatic conditions through experiments carried out in thermal explosion mode. Ignition temperatures were found to be characteristic of each system and to depend strongly on reactants particle size. Ignition energies for all compositions were evaluated through a mathematical model

    Solid Electrolyte Interphase:Can faster formation at lower potentials yield better performance?

    Get PDF
    To make a Lithium Ion Battery (LIB) reliably rechargeable over many cycles, its graphite-based negative electrode requires the solid electrolyte interphase (SEI) as a protection layer. The SEI is formed through chemical and particularly electrochemical side reactions of electrolyte components in the first charging cycle(s) after manufacturing of a LIB. The SEI ideally serves two purposes: (i) act as a sieve permeable to Li ions but not to other electrolyte components and (ii) passivate the electrode against further electrolyte decomposition. Core element of conventional SEI formation is a lengthy, low-current galvanostatic charging step, which due to its time consumption contributes heavily to cell manufacturing costs. Here, we report on some non-conventional SEI formation protocols for composite carbon electrodes, inspired by recent experimental findings at smooth model electrodes. Acknowledging that the SEI forms in two main steps, taking place in a high-potential and a low-potential region, respectively, we demonstrate that less time spent in the high-potential region not only makes the process faster but even yields SEIs with superior kinetic properties. We tentatively explain this via basic rules of thin film growth and the role of grain boundaries for ion transport. We also report on the positive influence of multi-frequency potential modulations applied between high-potential and low-potential formation. Given that any new cell chemistry in principle requires its own tailor-made formation process, technologic success of future LIB cells will benefit from a systematic, well-understood toolbox of formation protocols. This paper is meant as a first step, highlighting potentially low-hanging fruits, but also flagging the demand for further systematic studies on model systems and on commercially manufactured cells

    Nanoscale effects on the ionic conductivity of highly doped bulk nanometric cerium oxide

    Get PDF
    Nanometric ceria powders doped with 30 mol % samaria are consolidated by a high-pressure spark plasma sintering (HP-SPS) method to form > 99 % dense samples with a crystallite size as small as 16.5 nm. A conductivity dependence on grain size was noted: when the grain size was less than 20 nm, only one semicircle in the AC impedance spectra was observed and was attributed to bulk conductivity. In contrast to previous observations on pure ceria, the disappearance of the grain-boundary blocking effect is not associated with mixed conductivity. With annealing and concomitant grain growth, the samples show the presence of a grain-boundary effect

    New insights into the electrode/electrolyte interface on positive electrodes in Li-Ion batteries

    Get PDF
    International audienceUnderstanding and controlling the reactivity at the electrode/electrolyte interface (EEI) is one of the key issues for the development of high capacity and efficient lithium-ion batteries. The heterogeneous and partially catalytic reaction of the electrode with the electrolyte triggers the formation of surface films on the electrode surface which can cause degradation of the cell performance. Whereas the EEI layer properties are quite well known for negative electrodes such as lithium metal and graphite [1,2], the EEI layer on positive electrode materials is still puzzling. Especially the interface layers on high voltage and high capacity positive electrodes, whose potentials approach the limit of electrolyte stability against oxidation [3], is quite unexplored. One of the challenges in understanding the reactions at the surface of the electrode is the complicated composition of the positive electrodes, containing not only the active material but also conductive agents and polymeric binders, that can modify the EEI layers on the electrode. To bypass these ambiguities, there is a need for study model electrodes such as thin films or pure active material electrodes, which allow for investigating solely the reactivity of the electrolyte at the active material surface. Here, combining X-ray Photoelectron Spectroscopy (XPS and X-ray Absorption and Emission Spectroscopy (XAS/XES), of model electrodes, we will show how the species formed at the electrode/electrolyte interface are affected by change in charging potential and the structure and nature of the transition metal in the material. XES and XAS will be used to shed light on the change of electronic structure upon delithiation

    The Effect of Electrode-Electrolyte Interface on the Electrochemical Impedance Spectra for Positive Electrode in Li-Ion Battery

    Get PDF
    Understanding the effect of electrode-electrolyte interface (EEI) on the kinetics of electrode reaction is critical to design high-energy Li-ion batteries. While electrochemical impedance spectroscopy (EIS) is used widely to examine the kinetics of electrode reaction in Li-ion batteries, ambiguities exist in the physical origin of EIS responses for composite electrodes. In this study, we performed EIS measurement by using a three-electrode cell with a mesh-reference electrode, to avoid the effect of counter electrode impedance and artefactual responses due to asymmetric cell configuration, and composite or oxide-only working electrodes. Here we discuss the detailed assignment of impedance spectra for LiCoO[subscript 2] as a function of voltage. The high-frequency semicircle was assigned to the impedance associated with ion adsorption and desorption at the electrified interface while the low-frequency semicircle was related to the charge transfer impedance associated with desolvation/solvation of lithium ions, and lithium ion intercalation/de-intercalation into/from LixCoO[subscript 2]. Exposure to higher charging voltages and greater hold time at high voltages led to no significant change for the high-frequency component but greater resistance and greater activation energy for the low-frequency circle. The greater charge transfer impedance was attributed to the growth of EEI layers on the charged LixCoO[subscript 2] surface associated with electrolyte oxidation promoted by ethylene carbonate dehydrogenation. Keywords: Batteries - Lithium, Electrode Kinetics, EIS, Electrode-Electrolyte Interface, Li-ion BatteriesBMW Grou

    Formation of the Solid Electrolyte Interphase at Constant Potentials:a Model Study on Highly Oriented Pyrolytic Graphite

    Get PDF
    The solid electrolyte interphase (SEI) on graphite anodes is a key enabler for rechargeable lithium ion batteries (LIBs). It ensures that only Li+ ions and no damaging electrolyte components enter the anode and hinders electrolyte decomposition. Its growth should be confined to the initial SEI formation process and stop once the battery is in operation to avoid capacity/power loss. In technical LIB cells, the SEI is formed at constant current, with the potential of the graphite anode slowly drifting from higher to lower voltages. SEI formation rate, composition, and structure depend on the potential and on the chemical properties of the anode surface. Here, we characterize SEIs formed at constant potentials on the chemically inactive basal plane of highly oriented pyrolytic graphite (HOPG). X‐ray photoemission spectroscopy (XPS) detects carbonate‐species only at lower formation potentials. Cyclic voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) with Fc/Fc+ as an electrochemical probe demonstrate how the formation potential influences ion transport and electrochemical kinetics to and at the anode surface, respectively. Breaking the EIS data down to a Distribution of Relaxation Times (DRT) reveals distinct kinetics and transport related peaks with varying Arrhenius‐type temperature dependencies. We discuss our findings in the context of previous electrochemical studies and existing SEI models and of SEI formation protocols suitable for industry

    Tuning mobility and stability of lithium ion conductors based on lattice dynamics

    Get PDF
    Lithium ion conductivity in many structural families can be tuned by many orders of magnitude, with some rivaling that of liquid electrolytes at room temperature. Unfortunately, fast lithium conductors exhibit poor stability against lithium battery electrodes. In this article, we report a fundamentally new approach to alter ion mobility and stability against oxidation of lithium ion conductors using lattice dynamics. By combining inelastic neutron scattering measurements with density functional theory, fast lithium conductors were shown to have low lithium vibration frequency or low center of lithium phonon density of states. On the other hand, lowering anion phonon densities of states reduces the stability against electrochemical oxidation. Olivines with low lithium band centers but high anion band centers are promising lithium ion conductors with high ion conductivity and stability. Such findings highlight new strategies in controlling lattice dynamics to discover new lithium ion conductors with enhanced conductivity and stability.United States. National Science Foundation. Graduate Research Fellowship Program (Grant 1122374)Taiwan. Ministry of Science and Technology (Grant 102-2917-I-564-006-A1)United States. National Science Foundation (Award DMR-0819762)United States. National Energy Research Scientific Computing Center (Contract DE-AC02-05CH11231)Extreme Science and Engineering Discovery Environment (Grant ACI-1548562

    The role of an interface in stabilizing reaction intermediates for hydrogen evolution in aprotic electrolytes

    Get PDF
    By combining idealized experiments with realistic quantum mechanical simulations of an interface, we investigate electro-reduction reactions of HF, water and methanesulfonic acid (MSA) on the single crystal (111) facets of Au, Pt, Ir and Cu in organic aprotic electrolytes, 1 M LiPF(6) in EC/EMC 3:7W (LP57), the aprotic electrolyte commonly used in Li-ion batteries, 1 M LiClO(4) in EC/EMC 3:7W and 0.2 M TBAPF(6) in 3 : 7 EC/EMC. In our previous work, we have established that LiF formation, accompanied by H(2) evolution, is caused by a reduction of HF impurities and requires the presence of Li at the interface, which catalyzes the HF dissociation. In the present paper, we find that the measured potential of the electrochemical response for these reduction reactions correlates with the work function of the electrode surfaces and that the work function determines the potential for Li(+) adsorption. The reaction path is investigated further by electrochemical simulations suggesting that the overpotential of the reaction is related to stabilizing the active structure of the interface having adsorbed Li(+). Li(+) is needed to facilitate the dissociation of HF which is the source of protons. Further experiments on other proton sources, water and methanesulfonic acid, show that if the hydrogen evolution involves negatively charged intermediates, F(−) or HO(−), a cation at the interface can stabilize them and facilitate the reaction kinetics. When the proton source is already significantly dissociated (in the case of a strong acid), there is no negatively charged intermediate and thus the hydrogen evolution can proceed at much lower overpotentials. This reveals a situation where the overpotential for electrocatalysis is related to stabilizing the active structure of the interface, facilitating the reaction rather than providing the reaction energy

    Combustion synthesis: meccanismo e cinetica

    No full text
    Dottorato di ricerca in scienze chimiche. A.a. 1994-97Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7 Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
    corecore