4 research outputs found

    Behavior of Kinesin Driven Quantum Dots Trapped in a Microtubule Loop

    No full text
    We report the observation of kinesin driven quantum dots (QDs) trapped in a microtubule loop, allowing the investigation of moving QDs for a long time and an unprecedented long distance. The QD conjugates did not depart from our observational field of view, enabling the tracking of specific conjugates for more than 5 min. The unusually long run length and the periodicity caused by the loop track allow comparing and studying the trajectory of the kinesin driven QDs for more than 2 full laps, <i>i.e.</i>, about 70 Ī¼m, enabling a statistical analysis of interactions of the same kinesin driven object with the same obstacle. The trajectories were extracted and analyzed from kymographs with a newly developed algorithm. Despite dispersion, several repetitive trajectory patterns can be identified. A method evaluating the similarity is introduced allowing a quantitative comparison between the trajectories. The velocity variations appear strongly correlated to the presence of obstacles. We discuss the reasons making this long continuous travel distances on the loop track possible

    Precursor Geometry Determines the Growth Mechanism in Graphene Nanoribbons

    No full text
    On-surface synthesis with molecular precursors has emerged as the de facto route to atomically well-defined graphene nanoribbons (GNRs) with controlled zigzag and armchair edges. On Au(111) and Ag(111) surfaces, the prototypical precursor 10,10ā€²-dibromo-9,9ā€²-bianthryl (DBBA) polymerizes through an Ullmann reaction to form straight GNRs with armchair edges. However, on Cu(111), irrespective of the bianthryl precursor (dibromo-, dichloro-, or halogen-free bianthryl), the Ullmann route is inactive, and instead, identical chiral GNRs are formed. Using atomically resolved noncontact atomic force microscopy (nc-AFM), we studied the growth mechanism in detail. In contrast to the nonplanar BA-derived precursors, planar dibromoperylene (DBP) molecules do form armchair GNRs by Ullmann coupling on Cu(111), as they do on Au(111). These results highlight the role of the substrate, precursor shape, and moleculeā€“molecule interactions as decisive factors in determining the reaction pathway. Our findings establish a new design paradigm for molecular precursors and opens a route to the realization of previously unattainable covalently bonded nanostructures
    corecore