6 research outputs found

    Cannabis terpene profiling in therapeutic products by means of gas chromatography coupled with mass spectrometry

    Get PDF
    It is well-known that cannabinoids provide non-toxic medical benefits and have an effective role in the treatment of chronic pain due to their interaction with the endocannabinoid system. Recently, in addition to the “classical” therapeutic usage, like inhalation or ingestion of cannabis, newer ways of cannabinoid-based products utilization are also being developed. The skin application of topicals including balms, lotions, and oils that are infused with active cannabinoids is a minimally invasive method for the medical cannabis use and allows them to be absorbed directly into the affected area for faster and more focused relief.                According to the terpene profile, the medicinal effect of cannabinoids can change significantly. Terpenes, in fact, have various roles: can make the adsorption of cannabinoids faster, or lessen their effect, interact with cannabinoids, decrease the side-effects of the cannabinoid therapy, and help to relax and calm the patient.                Gas chromatography-mass spectrometric (GC-MS) analysis is a powerful analytical tool for detailed characterization of the volatile fractions of any kind of complex sample. For the identification, mass spectral databases are used, but in many cases, misidentification could occur due to the high spectral similarity of terpenes. The Linear Retention Index (LRI) approach combined with conventional mass spectral search provide a more reliable solution for peak assignment. The FFNSC 4.0 (Flavour and Fragrance Natural and Synthetic Compounds), a dedicated MS Library with embedded LRI information, including almost all of the 140 known cannabis terpenes can be a great support in terpene profiling, thereby also in the optimization of the therapy.                Aroma constituents of cannabinoid-containing medicinal products were analyzed by GC-MS. To obtain the characteristic volatile fraction, sample preparation method was optimized for each sample type. Terpenes were identified using FFNSC 4.0 database

    Novel analytical tool for a univocal flavor and fragrance identification: Gas chromatography coupled with condensed-phase FTIR and TOF mass spectrometry

    Get PDF
    The correct identification of flavor and fragrance (F&F) compounds in real samples is still a challenge despite the huge number of different instruments available. Only a slight structural difference can cause a very different sensory profile, for example in the case of geometric isomers, it is generally considered that (Z)-isomers have a more pleasant and natural odor than (E) ones.                The most frequently used instrument for the analysis of volatiles is gas chromatography (GC) coupled with mass spectrometry (MS). MS may still fail to adequately identify compounds because of the lack of specificity of spectra (terpenes, isomers). MS spectral searches can be supported with linear retention index (LRI) information which, although not in all cases, could resolve the problem of possible misidentification of target molecules.                Condensed phase FTIR can be a complementary detection system to MS, and its application could allow a very detailed structural elucidation. The novelty of this instrument is that the separated compounds are condensed in small, singular spots on a rotating disc, thus the distortion of spectra is eliminated, giving an excellent spectral resolution. Through the specificity of the “fingerprint” region around 1100 cm-1, even positional isomers and diastereomers could be distinguished.                Coupling condensed-phase FTIR after a simple post-column split to a GC-TOF MS, three independent analytical information can be obtained about the target compound: retention behavior (LRI), MS and FTIR spectra. Exploiting the enhanced resolution of the TOF MS and discriminating power of FTIR a unique TOF MS/FTIR spectral library with more than 1500 F&F compounds was developed, including also experimental LRI. Boosting this comprehensive information collection, a universal post-run software, namely CromatoPlus Spectra, performs the library search using the FTIR spectral similarity and LRI filter, simultaneously. A GC-TOF MS/FTIR method was optimized for the analysis of real essential-oil and perfume samples. Using the F&F library with embedded LRI, a reliable peak assignment was obtained for each separated compound

    Elucidation of Antioxidant Compounds in Moroccan Chamaerops humilis L. Fruits by GC-MS and HPLC-MS Techniques

    Get PDF
    The aim of this study was to characterize the phytochemical content as well as the antioxidant ability of the Moroccan species Chamaerops humilis L. Besides crude ethanolic extract, two extracts obtained by sonication using two solvents with increased polarity, namely ethyl acetate (EtOAc) and methanol-water (MeOH-H2O) 80:20 (v/v), were investigated by both spectroscopy and chromatography methods. Between the two extracts, the MeOH-H2O one showed the highest total polyphenolic content equal to 32.7 +/- 0.1 mg GAE/g DM with respect to the EtOAc extract (3.6 +/- 0.5 mg GAE/g DM). Concerning the antioxidant activity of the two extracts, the EtOAc one yielded the highest value (1.9 +/- 0.1 mg/mL) with respect to MeOH-H2O (0.4 +/- 0.1 mg/mL). The C. humilis n-hexane fraction, analyzed by GC-MS, exhibited 69 compounds belonging to different chemical classes, with n-Hexadecanoic acid as a major compound (21.75%), whereas the polyphenolic profile, elucidated by HPLC-PDA/MS, led to the identification of a total of sixteen and thirteen different compounds in both EtOAc (major component: ferulic acid: 104.7 +/- 2.52 mu g/g) and MeOH-H2O extracts (major component: chlorogenic acid: 45.4 +/- 1.59 mu g/g), respectively. The attained results clearly highlight the potential of C. humilis as an important source of bioactive components, making it a valuable candidate to be advantageously added to the daily diet. Furthermore, this study provides the scientific basis for the exploitation of the Doum in the food, pharmaceutical and nutraceutical industries

    Development of a Novel Microwave Distillation Technique for the Isolation of Cannabis sativa L. Essential Oil and Gas Chromatography Analyses for the Comprehensive Characterization of Terpenes and Terpenoids, Including Their Enantio-Distribution

    No full text
    A microwave distillation method was optimized for the extraction and isolation of cannabis essential oil from fresh and dried hemp inflorescences. The developed method enabled us to obtain a distilled product rich in terpenes and terpenoid compounds, responsible of the typical and unique smell of the cannabis plant. The distillate from different hemp cultivars, including Kompolti, Futura 75, Carmagnola, Felina 32 and Finola were characterized by using a gas chromatograph equipped with both mass spectrometer and flame ionization detectors. In a single chromatographic run, the identity and absolute amounts of distilled compounds were determined. Peak assignment was established using a reliable approach based on the usage of two identification parameters, named reverse match, and linear retention index filter. Absolute quantification (mg g−1) of the analytes was performed using an internal standard method applying the flame ionization detector (FID) response factors according to each chemical family. An enantio-GC-MS method was also developed in order to evaluate the enantiomeric distribution of chiral compounds, an analytical approach commonly utilized for establishing the authenticity of suspicious samples

    Chemical Characterization of Three Accessions of Brassica juncea L. Extracts from Different Plant Tissues

    No full text
    Indian mustard or Brassica juncea (B. juncea) is an oilseed plant used in many types of food (as mustard or IV range salad). It also has non-food uses (e.g., as green manure), and is a good model for phytoremediation of metals and pesticides. In recent years, it gained special attention due to its biological compounds and potential beneficial effects on human health. In this study, different tissues, namely leaves, stems, roots, and flowers of three accessions of B. juncea: ISCI 99 (Sample A), ISCI Top (Sample B), and “Broad-leaf” (Sample C) were analyzed by HPLC-PDA/ESI-MS/MS. Most polyphenols identified were bound to sugars and phenolic acids. Among the three cultivars, Sample A flowers turned were the richest ones, and the most abundant bioactive identified was represented by Isorhamnetin 3,7-diglucoside (683.62 µg/100 mg dry weight (DW) in Sample A, 433.65 µg/100 mg DW in Sample B, and 644.43 µg/100 mg DW in Sample C). In addition, the most complex samples, viz. leaves were analyzed by GC-FID/MS. The major volatile constituents of B. juncea L. leaves extract in the three cultivars were benzenepropanenitrile (34.94% in Sample B, 8.16% in Sample A, 6.24% in Sample C), followed by benzofuranone (8.54% in Sample A, 6.32% in Sample C, 3.64% in Sample B), and phytone (3.77% in Sample B, 2.85% in Sample A, 1.01% in Sample C). The overall evaluation of different tissues from three B. juncea accessions, through chemical analysis of the volatile and non-volatile compounds, can be advantageously taken into consideration for future use as dietary supplements and nutraceuticals in food matrices

    Chemical Composition, Antifungal and Anti-Biofilm Activities of Volatile Fractions of Convolvulus althaeoides L. Roots from Tunisia

    No full text
    The antifungal drugs currently available and mostly used for the treatment of candidiasis exhibit the phenomena of toxicity and increasing resistance. In this context, plant materials might represent promising sources of antifungal agents. The aim of this study is to evaluate for the first time the chemical content of the volatile fractions (VFs) along with the antifungal and anti-biofilm of Convolvulus althaeoides L. roots. The chemical composition was determined by gas chromatography coupled to a flame ionization detector and mass spectrometry. In total, 73 and 86 chemical compounds were detected in the n-hexane (VF1) and chloroform (VF2) fractions, respectively. Analysis revealed the presence of four main compounds: n-hexadecenoic acid (29.77%), 4-vinyl guaiacol (12.2%), bis(2-ethylhexyl)-adipate (9.69%) and eicosane (3.98%) in the VF extracted by hexane (VF1). n-hexadecenoic acid (34.04%), benzyl alcohol (7.86%) and linoleic acid (7.30%) were the main compounds found in the VF extracted with chloroform (VF2). The antifungal minimum inhibitory concentrations (MICs) of the obtained fractions against Candida albicans, Candida glabrata and Candida tropicalis were determined by the micro-dilution technique and values against Candida spp. ranged from 0.87 to 3.5 mg/mL. The biofilm inhibitory concentrations (IBF) and sustained inhibition (BSI) assays on C. albicans, C. glabrata and C. tropicalis were also investigated. The VFs inhibited biofilm formation up to 0.87 mg/mL for C. albicans, up to 1.75 mg/mL against C. glabrata and up to 0.87 mg/mL against C. tropicalis. The obtained results highlighted the synergistic mechanism of the detected molecules in the prevention of candidosic biofilm formation
    corecore