6 research outputs found

    Tumor control in birds

    No full text
    Neoplasia is common in pet birds, especially psittacines, and mainly involves the integument and urogenital system. Before treatment options are considered, a definitive diagnosis should be made and the extent of the disease determined. Treatment should initially be directed at tumor eradication and may involve using several modalities together or sequentially. Surgery, radiotherapy, and photodynamic therapy are used against localized tumors, while chemotherapy and biological response modification are also used against metastatic disease. In combination or adjunct therapy, surgery is used to excise or debulk the tumor, radiotherapy to sterilize local regional disease and chemotherapy and biological therapy to help prevent metastatic disease. The tumor control program should be rationally planned before application, rather than added on when one modality fails, as is commonly practiced. Tumor response to therapy should be regularly assessed both in the short and long term and wherever possible, assessment should be quantitated. Work place health and safety procedures for radiation and cytotoxic drugs should always be practiced. (C) 2004 Elsevier Inc. All rights reserved

    Spermiogenesis in the Australian Cockatiel Nymphicus hollandicus

    No full text
    Information on the ultrastructure of parrot spermatids and spermatozoa is limited to only four species with no comprehensive study of spermiogenesis conducted within the order Psittaciformes. The present study was undertaken to describe the development of the cockatiel spermatid using electron microscopy. Four phases of spermatid maturation were documented on the basis of nuclear morphology, development of the acrosome, perforatorium, and axial filament. These phases included 1) round nuclei, 2) irregular nuclei, 3) elongated nuclei with granular chromatin, and 4) elongated nuclei with homogenous chromatin. While development of the cockatiel spermatid was comparable to that of other domestic avian species, we have noted the hollow nature of some chromatin granules, an abnormal formation of the axoneme, the absence of the fibrous sheath around the axoneme of the principal piece, and the absence of an annulus

    Multidrug-Resistant E. coli and Enterobacter Extraintestinal infection in 37 dogs

    No full text
    Background: Extraintestinal infections caused by multidrug-resistant (MDR) Escherichia coli and Enterobacter are becoming more common in veterinary medicine

    Canine model for investigating the impact of oral enrofloxacin on commensal coliforms and colonization with multidrug-resistant Escherichia coli

    No full text
    A model was developed in dogs to determine the impact of oral enrofloxacin administration on the indigenous coliform population in the gastrointestinal tract and subsequent disposition to colonization by a strain of multidrug-resistant Escherichia coli (MDREC). Dogs given a daily oral dose of 5 mg enrofloxacin kg(-1) for 21 consecutive days showed a significant decline in faecal coliforms to levels below detectable limits by 72 In of administration. Subsequently, faecal coliforms remained suppressed throughout the period of enrofloxacin dosing. Upon termination of antibiotic administration, the number of excreted faecal coliforms slowly returned over an 8-day period, to levels comparable to those seen prior to antibiotic treatment. Enrofloxacin-treated dogs were more effectively colonized by MDREC, evidenced by a significantly increased count of MDREC in the faeces (7.1 +/- 1.5 log(10) g(-1)) compared with non-antibiotic-treated dogs (5.2 +/- 1.2; P = 0.003). Furthermore, antibiotic treatment also sustained a significantly longer period of MDREC excretion in the faeces (26.8 +/- 10.5 days) compared with animals not treated with enrofloxacin (8.5 +/- 5.4 days; P = 0.0215). These results confirm the importance of sustained delivery of an antimicrobial agent to maintain and expand the colonization potential of drug-resistant bacteria in vivo, achieved in part by reducing the competing commensal coliforms in the gastrointestinal tract to below detectable levels in the faeces. Without in vivo antimicrobial selection pressure, commensal coliforms dominated the gastrointestinal tract at the expense of the MDREC population. Conceivably, the model developed could be used to test the efficacy of novel non-antibiotic strategies aimed at monitoring and controlling gastrointestinal colonization by multidrug-resistant members of the Enterobacteriaceae that cause nosocomial infections

    Delivery of sevoflurane to dogs using a Stephens anaesthetic machine

    No full text
    Objective: To investigate the sevoflurane concentrations produced within the Stephens anaesthetic machine circuit (vaporizer in-circle system) at different fresh gas flow rates (FGFRs), temperatures, vaporizer settings and vaporizer sleeve positions when used to anaesthetize dogs of different body sizes. Study design: Experimental non-blinded studies. Animals: Eighteen mixed breed dogs, weights 4-39 kg. Methods: Anaesthetic induction with propofol was followed by maintenance with sevoflurane in oxygen via the Stephens anaesthetic machine. In study 1, the vaporizer setting, temperature and circuit FGFRs were altered with the vaporizer sleeve down (n = 3), or in separate experiments, up (n = 3). Delivered (Fi′SEVO) and expired sevoflurane concentrations were recorded. Study 2 determined the vaporizer settings (sleeve up) required to achieve predetermined multiples of minimal alveolar concentration (MAC) of Fi′SEVO when sevoflurane was delivered to dogs (n = 12) of different bodyweights and at different FGFRs. Results: Delivered concentrations of sevoflurane were sufficient to maintain anaesthesia in all dogs, regardless of bodyweight, FGFR, vaporizer temperature and sleeve position. Fi′SEVO increased with increasing temperature, when the vaporizer sleeve was down, when vaporizer setting was increased and when FGFR was decreased. As the FGFR increased or the dog's bodyweight decreased, higher vaporizer settings were required to produce the same Fi′SEVO. The median Stephens vaporizer settings to achieve an Fi′SEVO of 1.3 MAC ranged from 4.3 to 5.0 for a small dog (1-10 kg), 2.5 to 5.6 for a medium dog (15-25 kg) and 2.5 to 3.5 for a large dog (30-40 kg), depending on the FGFR. Conclusion and clinical relevance: The Stephens anaesthetic machine can deliver to dogs, weighing 4 kg and above, concentrations of sevoflurane sufficient or in excess of that required to maintain anaesthesia, at temperatures from 10 to 35 °C, FGFRs of 1 to 5 times the patient's estimated metabolic oxygen requirement and at any vaporizer sleeve position
    corecore