28 research outputs found

    Geographical restriction of Hepatitis E virus circulation in wild boars (Sus scrofa) in Emilia-Romagna region, Northern Italy

    Get PDF
    Hepatitis E virus (HEV) is a single‐strand RNA virus that causes an acute viral hepatitis in humans. Among its eight recognized genotypes, HEV-3 and HEV-4 are zoonotic, infecting humans, pigs and feral pigs. Recently, HEV-3 has been also detected in red deer, which represents another reservoir of HEV. Consumption of raw pork products (mainly liver sausages), undercooked wild boar meat, raw wild boar liver and deer meat has been responsible for foodborne HEV human worldwide. From November 2018 to March 2019, liver samples collected from 97 wild boars hunted in Emilia-Romagna region (Northern Italy) were tested for HEV RNA. The hunting area included two territories for an extension of 33 km2, named A (about 13 km2, natural park, deciduous wood) and B (about 20 km2, cultivated fields in proximity of a river) areas. Distance between the two areas ranged between 8 to 10 km. A total of 73 wild boars were hunted in area A, and 24 in area B. HEV RNA was detected by Real‐time RT–PCR in 23/73 liver samples of wild boars living in area A only (31.5% - 95% CI: 22.0-42.8%). The HEV sequences (n=13) clustered within genotype 3. The majority of positives belonged to animals < 12 months (12/25; 48%), followed by subadults (13-24 months) (7/16; 43.8%) and adults (4/32; 12.5%). This difference was found to be statistically significant (p = 0.0024). In absence of pig farms, the restriction of HEV-positive animals to a well-defined territory of 13 km2 (Boschi di Carrega Regional Park) could hypothetically be related to the presence of red deer (Cervus elaphus), which lived in area A at the beginning of the hunting season. Further studies are needed to confirm or deny our hypothesis

    Absence of Hepatitis E Virus (HEV) in Italian Lagomorph Species Sampled between 2019 and 2021

    Get PDF
    The zoonotic hepatitis E virus genotype 3 (HEV-3) causes most autochthonous human hepatitis E cases in Europe, which are due to the consumption of raw or undercooked food products of animal origin. Pigs and wild boars are considered the main reservoirs of this genotype, while rabbits are the reservoir of a distinct phylogenetic group named HEV-3ra, which is classified within the HEV-3 genotype but in a separate clade. Evidence for the zoonotic potential of HEV-3ra was suggested by its detection in immunocompromised patients in several European countries. HEV- 3ra infection was found in farmed and feral rabbit populations worldwide and its circulation was reported in a few European countries, including Italy. Furthermore, Italy is one of the major rabbit meat producers and consumers across Europe, but only a few studies investigated the presence of HEV in this reservoir. The aim of this study was to assess the presence of HEV in 328 Italian hares and 59 farmed rabbits collected in 3 Italian macro-areas (North, North-Central, and South-Central), between 2019 and 2021. For this purpose, liver samples were used to detect HEV RNA using broad- range real-time RT-PCR and nested RT-PCR. Using 28 liver transudates from hares, the ELISA test for anti-HEV IgG detection was also performed. Neither HEV RNA nor anti-HEV antibodies were detected. Further studies will be conducted to assess the HEV presence in Italian lagomorphs to establish the role of this host and the possible risk of transmission for workers with occupational exposure, to pet owners and via food

    Newly Designed Primers for the Sequencing of the inlA Gene of Lineage I and II Listeria monocytogenes Isolates

    No full text
    Listeria monocytogenes is a major human foodborne pathogen responsible for listeriosis. The virulence factor Internalin A (inlA) has a key role in the invasion of L. monocytogenes into the human intestinal epithelium, and the presence of premature stop-codons (PMSC) mutations in the inlA gene sequence is correlated with attenuated virulence. The inlA sequencing process is carried out by dividing the gene into three sections which are then reassembled to obtain the full gene. The primers available however were only able to entirely amplify the lineage II isolates. In this study, we present a set of new primers which allow inlA sequencing of isolates belonging to both lineages, since lineage I isolates are the ones most frequently associated to clinical cases. Using newly designed primers, we assessed the presence of inlA PMSCs in food, food processing environments and clinical isolates
    corecore