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Abstract 

Listeriosis is a foodborne illness characterized by a relatively low morbidity, but a large 

disease burden due to the severity of clinical manifestations and the high case fatality rate. In-

creased listeriosis notifications have been observed in Europe since the 2000s. However, the rea-

sons for this increase are largely unknown, with the sources of sporadic human listerioris often 

remaining elusive. Here we inferred the relative contributions of several putative sources of Lis-

teria monocytogenes strains from listerioris patients in Northern Italy (Piedmont and Lombardy 

regions), using two established source attribution models (i.e. ‘Dutch’ and ‘STRUCTURE’) in 

comparative fashion. We compared the Multi-Locus Sequence Typing and Multi-Virulence-

Locus Sequence Typing profiles of strains collected from beef, dairy, fish, game, mixed foods, 

mixed meat, pork, and poultry. Overall, 634 L. monocytogenes isolates were collected from 2005 

to 2016. In total, 40 clonal complexes and 51 virulence types were identified, with 36% of the 

isolates belonging to possible epidemic clones (i.e. genetically related strains from unrelated out-

breaks). Source attribution analysis showed that 50% of human listerioris cases (95% Confidence 

Interval 44-55%) could be attributed to dairy products, followed by poultry and pork (15% each), 

and mixed foods (15%). Since the contamination of dairy, poultry and pork products are closely 

linked to primary production, expanding actions currently limited to ready-to-eat products to the 

reservoir level may help reducing the risk of cross-contamination at the consumer level.  

Keywords 

Listeria monocytogenes, listeriosis, food safety, epidemic clones, source attribution, molecular 

epidemiology  
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Introduction 1 

Listeria monocytogenes is a bacterial foodborne pathogen that rarely causes severe disease 2 

in healthy individuals. Indeed, clinical listeriosis mainly occurs in at-risk groups: pregnant wom-3 

en, elderly people, immunocompromised people, unborn babies, and neonates (Lomonaco, Nuce-4 

ra, and Filipello 2015). In Europe, the incidence of listeriosis is approximately 0.48 per 100,000 5 

inhabitants, and infections can occur either in a sporadic or epidemic form (EFSA and ECDC 6 

2018). Several wild and domestic animals can also acquire infection with L. monocytogenes, 7 

particularly mammals and birds, which are also considered potential zoonotic reservoirs of the 8 

pathogen (Vivant, Garmyn, and Piveteau 2013). Among mammals, ruminants are the most sus-9 

ceptible to listeriosis, and L. monocytogenes subtypes associated with human listeriosis cases 10 

have been identified in bovine farms as well (Nightingale et al. 2004; Rocha et al. 2013). In 11 

birds, listeriosis mainly occurs sporadically, and it is believed that birds may act as a potential 12 

source for the infection in ruminants through the contamination of pastures and feed crops 13 

(Dhama et al. 2013; Locatelli et al. 2013). While exposure to infected animals and contaminated 14 

agricultural environments rarely appear to be directly linked to human infections, animal-derived 15 

food products that are consumed raw or undercooked, refrigerated RTE stored for long periods, 16 

as well as manure-contaminated fresh produce, often cause disease in humans (Nightingale et al. 17 

2004; Lopez-Valladares, Danielsson-Tham, and Tham 2018). Moreover, unlike most foodborne 18 

pathogens, L. monocytogenes can grow in conditions of fairly low moisture, high salt concentra-19 

tion, and most importantly, at refrigeration temperatures, thereby conferring ability to persist and 20 

multiply in the food environment (Matthews, Kniel, and Montville 2017). 21 

In case of human infection, the ubiquitous nature of L. monocytogenes and ability to sur-22 

vive for long periods outside the host, coupled with a relatively long incubation period, may 23 
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hamper the identification of the source (Dhama et al. 2015). Indeed, by the time of listeriosis 24 

diagnosis, food leftovers are very seldom available, and recalling the exact food consumption 25 

history preceding the infection may also be difficult (Amato et al. 2017; Jackson, Iwamoto, and 26 

Swerdlow 2010). Source attribution modelling based on microbial subtyping offers the oppor-27 

tunity to overcome these difficulties. Indeed, source attribution allows for the quantification of 28 

the relative contributions of the main animal, food, and environmental sources of foodborne dis-29 

ease, and attributions can be estimated at different points along the food chain, including produc-30 

tion, distribution, and consumption (Pires et al. 2009). 31 

Source attribution based on microbial subtyping relies on the characterisation of isolates 32 

using different phenotyping or genotyping methods (Andreoletti et al. 2008). Human cases are 33 

then probabilistically attributed to sources by comparing the subtype distributions of human 34 

source strains through mathematical models (Mughini-Gras and van Pelt 2014). Two main fami-35 

lies of source attribution models are available: the so-called ‘frequency matching’ and ‘popula-36 

tion genetics’ models, each with several advantages and disadvantages, as discussed in a recent 37 

opinion paper (Mughini-Gras et al. 2018). Overall, the source attribution approach has proven 38 

useful in prioritising and guiding control strategies, allowing for the identification of the most 39 

important reservoirs of specific pathogens (Boysen et al. 2014).  40 

Multi-Locus Sequence Typing (MLST) and Multi-Virulence-Locus Sequence Typing 41 

(MVLST) are sequence-based methods in which Single Nucleotide Polymorphisms (SNPs) in 42 

fragments of a set of genes are used to determine allelic variants. MLST is based on a set of 7 43 

housekeeping genes, while MVLST is based on a set of 6 virulence genes. MLST has been used 44 

to study and describe the population structure and phylogeny of L. monocytogenes, while 45 

MVLST has been used to identify Epidemic Clones (ECs) in outbreak investigations (Ragon et 46 
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al. 2008; Amato et al. 2017; Lomonaco et al. 2013; Chen, Zhang, and Knabel 2005; Knabel et al. 47 

2012). An advantage of using allele-based methods is the presence of a shared nomenclature 48 

based on reference strains publicly available on dedicated databases (MLST, 49 

http://bigsdb.pasteur.fr/Listeria/Listeria.html; MVLST, 50 

https://sites.google.com/site/mvlstdatabase). 51 

The aim of this study was to quantify the relative contributions of several putative sources 52 

of human listeriosis cases in Northern Italy by using two established source attribution modelling 53 

approaches based on MLST and MVLST data for clinical L. monocytogenes strains and strains 54 

from beef, dairy, fish, game, mixed foods, mixed meat, pork, and poultry. To further describe the 55 

strains circulating in the considered area the majority of the isolates were analysed with Whole 56 

Genome Sequencing (WGS), and screened for Antimicrobial Resistance (AMR) genes and SNP 57 

clustering through the NCBI Pathogen Detection pipeline. 58 

 59 

Materials and Methods 60 

Isolates collection 61 

A total of 634 L. monocytogenes isolates were available for this study. These included 62 

218 isolates from human listeriosis patients and 416 from various food sources, divided into 8 63 

categories (i.e. beef, dairy, fish, game, mixed food, mixed meat, pork, and poultry). Clinical iso-64 

lates were collected between 2005 and 2016 through a voluntary network of hospital laboratories 65 

in two Northern Italy regions, i.e. Lombardy and Piedmont (Mammina et al. 2013; Filipello et al. 66 

2015). The food isolates were collected between 2004 and 2015 during the routine surveillance 67 

carried out by the Regional Animal Health and Food Safety Institutes (IZS) or in previous re-68 

search projects aimed at studying the epidemiology of L. monocytogenes along the food chain 69 

carried out by the Department of Veterinary Sciences of the University of Turin.  70 
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Molecular typing  71 

The whole genome sequences for 510 isolates, represented by food and environmental 72 

(n=416) and clinical isolates (n=94), were obtained at the Center for Food Safety and Applied 73 

Nutrition (CFSAN) of the US Food and Drug Administration (Lomonaco et al. 2018). DNA ex-74 

traction was performed using the DNeasy blood and tissue kit (Qiagen, Hilden, Germany), fol-75 

lowing manufacturer's instructions. DNA libraries were generated using the Illumina Nextera XT 76 

DNA Library Preparation Kit. WGS was performed on a MiSeq or a NextSeq system using a 77 

2 × 250 bp or a 2x150 bp paired-end MiSeq/NextSeq Reagent Kit, respectively (Illumina, San 78 

Diego, CA, USA). MLST and MVLST data were extracted from the WGS data (Lomonaco et al. 79 

2018). The remaining 124 clinical isolates were typed with MLST and MVLST as previously 80 

described (Chen, Zhang, and Knabel 2005; Ragon et al. 2008). Sequence Types (STs) and Viru-81 

lence Types (VTs) were defined using the allelic sequences of the different loci schemes availa-82 

ble in the respective online databases (MLST, https://bigsdb.pasteur.fr/listeria/listeria.html and 83 

MVLST, https://sites.google.com/site/mvlstdatabase/) and were used to assign isolates to Clonal 84 

Complexes (CCs) (i.e. groups of isolates with at least 6 alleles in common with another member 85 

of the same group) and to identify ECs. Both MLST and MVLST data were visualized using 86 

Minimum Spanning Trees (MSTs), generated by the PHYLOViZ software (Francisco et al. 87 

2012). 88 

WGS data for the strains described herein is also available on the NCBI Pathogen Detec-89 

tion database (NCBI PD, https://www.ncbi.nlm.nih.gov/pathogens/), a centralized system inte-90 

grating WGS data for several bacterial pathogens obtained from different sources with the scope 91 

of rapidly linking food or environmental isolates to clinical isolates to discover potential sources 92 

of contamination and aid traceback/outbreak investigations. Single-linkage clustering (with SNP 93 
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distance of 50 SNPs) is used to identify closely related sets of isolates and assign SNP cluster 94 

accessions (i.e. PDS#). Individual phylogenetic trees are available for each SNP cluster, based on 95 

maximum compatibility (Cherry 2017). Isolates that are not within 50 SNPs of any other isolate 96 

are not assigned to a SNP cluster. The NCBI Pathogen Detection pipeline also provides data 97 

about the AMR genotype listing the antimicrobial resistance genes that have been identified by 98 

the NCBI AMR Finder process. As of April 1st, 2019, the NCBI PD database contains 26,567 L. 99 

monocytogenes isolates, and the isolates analysed herein can be found under BioProject ID 100 

PRJNA304956. Data on the NCBI PD is available for 508 of the 510 L. monocytogenes strains 101 

typed with WGS under BioProject PRJNA304956 (Lomonaco et al., 2018). Two strains 102 

(CFSAN045809 and CFSAN049182) were excluded from NCBI PD because their genome size 103 

was considered too small and outside the accepted ranges. Overall, 514 isolates are listed under 104 

BioProject PRJNA304956, with 6 strains (CFSAN044745, 044769, 046011, 046039, 046086, 105 

049217) not included in the original publication (Lomonaco et al., 2018), and thus not consid-106 

ered herein.  107 

Source attribution modelling 108 

Human cases were attributed to the putative sources by applying two different models in 109 

parallel, the ‘Dutch model’ (Lapo Mughini-Gras, Franz, and van Pelt 2018) and ‘STRUCTURE’ 110 

(Pritchard, Stephens, and Donnelly 2000). The Dutch model is a simple frequency-matching 111 

model that compares the number of human cases caused by a specific subtype (i.e. ST or VT), 112 

with the relative occurrence of that subtype in each source. This model was applied separately on 113 

MLST and MVLST data, resulting in two model-data type combinations (MLST Dutch and 114 

MVLST Dutch). STRUCTURE is a population genetics, Bayesian clustering model that uses 115 

multi-locus genotype data to infer population structure and to assign individuals in a sample to 116 
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populations. This model was applied separately to MLST, MVLST, and coupled 117 

MLST+MVLST data (genotypic profiles defined by the combined 13 alleles), resulting in three 118 

model-data type combinations (MLST STRUCTURE, MVLST STRUCTURE, and 119 

MVLST+MLST STRUCTURE). For a more detailed description of the source attribution mod-120 

els, we refer to previous papers (Pritchard, Stephens, and Donnelly 2000; Lapo Mughini-Gras, 121 

Franz, and van Pelt 2018). 122 

Statistical analysis 123 

To assess differences in attributions over the different model-data type combinations (i.e. 124 

MLST Dutch, MVLST Dutch, MLST STRUCTURE, MVLST STRUCTURE, and 125 

MLST+MVLST STRUCTURE), the attributable proportions of cases were compared by exact 126 

two-tailed binomial test for each model-data type combination.  To evaluate the agreement be-127 

tween attributions, a correlation matrix between the 5 model-data type combination was calculat-128 

ed using the Pearson correlation coefficient (rho). For each model-data type combination, the 129 

attributable proportions were ordered and ranked in ascending order. A median was calculated 130 

for each food category taking into account each value and the median of the ranks was used to 131 

provide an overall classification. All analyses were performed by open source software R (R 132 

Development Core Team). 133 

 134 

Results 135 

MLST typing 136 

MLST results were available for 628 of the 634 isolates. MLST results were not available 137 

for six isolates (378, 379, 409, 598, 600, 609; S1). Among the typed isolates, 596 isolates be-138 

longed to 40 different CCs, and 32 isolates belonged to 9 singleton STs (not belonging to any 139 
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CC). The most significant group of clonal isolates was represented by ST9 (n=185 isolates, 140 

29%), corresponding to 3 different VTs. (VT11, VT160, and VT162). In total 14 CCs accounted 141 

for 95% of the isolates (Figure 1; S1).  142 

MVLST typing 143 

MVLST results were available for all 634 isolates. In total, 51 different VTs were identi-144 

fied (S1), 17 isolates did not belong to any previously assigned VT and were therefore assigned 145 

to new VTs (VT160-VT168). Overall, VT11 represented the most abundant group of isolates 146 

(n=186, 29%), corresponding to ST9 (n=180) and ST204 (n=6). Overall, 36% (n=228) of the 147 

isolates belonged to 9 ECs (Table 1). In particular, ECs represented 22% (n=90) of the food 148 

chain isolates, and 64% (n=138) of the clinical isolates. The population structure of the isolates 149 

typed with MVLST and the proportion of the different sources identified for each VT are de-150 

scribed in Figure 2. 151 

WGS analysis: antimicrobial resistance and SNP clusters 152 

Based on the NCBI Pathogen Detection browser, out of 508 isolates typed with WGS the 153 

tet(M) gene coding for resistance to tetracycline was found in 5.3% (n=27), while one isolate 154 

was listed with the tet gene. No presence of penicillin resistance genes was observed. Eighty-one 155 

isolates (n=22 clinical and n=59 food/environmental) were not assigned to any SNP clusters, 156 

while the remaining 427 isolates belonged to a total of 71 SNP clusters, as of April 1st, 2019 157 

(Tables 2 and 3). About 32% (n=23) of the SNP clusters were “local”, comprising only isolates 158 

(n=73) from this study and not correlating with isolates from different countries/sources (Table 159 

3). Of the 23 local SNP clusters, 16 only comprised food/environmental isolates (grouping from 160 

2 to 8 isolates each), 6 only clinical isolates (grouping 2 or 3 isolates each), and 1 comprised both 161 

clinical and food/environmental isolates. The latter (PDS000006278.4) grouped 3 isolates within 162 
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11 SNPs, collected from a patient (blood) in 2014 and swabs from dairy plants collected in 2004 163 

and 2014.  164 

  The remaining ~68% of SNP clusters (n=48) were “global”, comprising 354 strains that 165 

were similar to other 3,179 isolates in the database (Table 2). Overall, among all SNP clusters 166 

detected herein, PDS000025311.40 was the largest, grouping a total of 517 isolates (246 clinical 167 

and 271 food/environmental/other). The most predominant cluster observed among our isolates 168 

was PDS000024241.19 (n=138), comprising ~75% of the 184 WGS-derived VT11 isolates, fol-169 

lowed by PDS000001093.24  (n=35), PDS000024645.27 (n=22), and PDS000025311.40 170 

(n=20). Isolates belonging to the most common detected profile (i.e. VT11)  were distributed in 171 

5 global SNP clusters: VT9/ST11 isolates (n=151, 82%) in PDS000024241.19, 172 

PDS000011669.6, PDS000025489.2, and PDS000024263.2; and all VT11/ST204 isolates (n=6, 173 

3.2%) in PDS000024900.22. The remaining VT11 isolates were either in 5 local SNP clusters 174 

(n=20, ~11%) (Table 3) or unclustered (n=7, 3.8%). In our study, 10 out of the 24 isolates 175 

(~42%) from the production chain of Gorgonzola, a Protected Designation of Origin (PDO) blue 176 

cheese, are grouped into SNP cluster PDS000001093.24 (n=58), which also contains isolates 177 

from Gorgonzola, Taleggio, Blue Stilton and blue-veined and mold-ripened cheese isolates from 178 

the US and Italy.  179 

Source attribution 180 

All 5 combinations of models and type of data identified dairy products as the main 181 

source of human listeriosis cases (maximum attribution 53%, 95% Confidence Interval [95%CI] 182 

46.96-58.42; Figure 3 and 4; S2). Even if the attributions varied, the different sources ranked 183 

similarly across the 5 model-data type combinations, with the exception of pork and poultry (Ta-184 

ble 4). Specifially, in the Dutch model, pork appears to be the second most important source 185 
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(15% and 14% based on MLST and MVLST, respectively); while poultry appears to be more 186 

important in STRUCTURE, especially when using MVLST (18%, 95%CI 15.23-21.51; S2).  187 

We observed high agreement among the 5 model-data type combinations (Table 5), with 188 

the lowest rho value (0.702, p<0.0001) observed between MVLST Dutch and MVLST STRUC-189 

TURE, and the highest rho value (0.997, p<0.001) between MLST STRUCTURE and MLST+ 190 

MVLST  STRUCTURE.  High rho values were also observed between the STRUCTURE and 191 

Dutch models, with a rho value of 0.899 (p<0.0001) between MLST+MVLST STRUCTURE 192 

and MLST Dutch. The high agreement among the different model-data type combinations sug-193 

gests a high goodness of fit. Increasing the number of loci in STRUCTURE by including 13 loci 194 

for MLST and MVLST together did not influence the source attribution results significantly 195 

(Figure 4). 196 

Discussion 197 

We characterized a large collection of L. monocytogenes isolates from human cases and 198 

different putative food sources in Northern Italy and identified the most likely sources of human 199 

listeriosis in that area. These results can support risk managers in prioritizing public health inter-200 

ventions. Source attribution using the microbial subtyping method is particularly important for 201 

listeriosis, as not all strains have the same ability to cause disease (Nightingale et al. 2008). 202 

In our study, source attribution was performed using 2 models (Dutch and STRUCTURE) 203 

and 2 typing methods (MLST and MVLST ), considering 8 different food sources. Moreover, 204 

WGS was performed to obtain typing data, AMR data, SNP clusters, and comparison with more 205 

than 26,000 isolates already present in the NCBI PD on-line databases. The screening of WGS 206 

data for AMR genes showed that ~5% (n=27) of the isolates carried the tetracycline-conferring 207 

resistance gene tet(M), a higher percentage than the 0.5% reported at the European level (Nielsen 208 
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et al. 2017). Among our isolates, ~89% (n=24) of tet(M) positive isolates belonged to ST9/VT11 209 

isolates, that were overrepresented, possibly explaining the higher proportion. As also reported in 210 

other studies, tet(M) is the resistance gene most frequelntly detected in L. monocytogenes due to 211 

the transfer through mobile genetic elements from other resistant Gram-positive bacteria (Hau-212 

bert et al. 2018). No isolates carried penicillin resistance genes, consistently with findings from 213 

the European report (Nielsen et al. 2017).  214 

In total, 40 CCs and 51 VTs were identified, with CC9 being the most prevalent type and 215 

accounting for 43% of the food isolates and represented by all food sources (S1; Figure 2). On 216 

the Listeria MLST Pasteur database, CC9 isolates (n=223, 6% of all isolates in the database) 217 

originated from a wide variety of sources, including natural environment samples. None of the 218 

CC9 isolates with available information on the Pasteur database (n=12) carried the tet(M) gene. 219 

In our samples, CC9 mainly corresponded to VT11 and its Single Locus Variants (SLV – isolates 220 

with n-1 alleles in common to the linked node; VT160 and VT162 in Figure 2). ST9/VT11 had 221 

been previously identified as the most predominant and persistent type also in a study that inves-222 

tigated the presence of L. monocytogenes in meat processing plant in Spain (Martín et al. 2014), 223 

and in a study carried out in a mushroom processing plant in the US (Murugesan et al. 2015). 224 

Despite such a broad diffusion, it seems that ST9/VT11 isolates have a minor role in causing 225 

clinical cases, as only 5 human clinical strains belongend to this genotype (2.3% of cases; S1), 226 

and thus may be more adapted to survive in the environment. Indeed, CC9 has been observed as 227 

significantly associated with food and food environment and with a particularly high prevalence 228 

of truncated InlA variants, which are associated with hypovirulence (Moura et al. 2017; Nightin-229 

gale et al. 2008). The main cluster of clinical cases are instead represented by CC101 (n=50, 230 

23%) and CC1 (n=31, 14.2%). In particular, CC101 is the major cluster of clinical cases, which 231 
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had been previously singled out in a 2014 study, where it stood out among different CCs for be-232 

ing the only one with a clear predominance of human isolates (Haase et al. 2014). A novel EC 233 

associated with CC101, i.e. ECXI, was recently recognized as involved in two unrelated out-234 

breaks linked to the consumption of Ricotta salata (USA, 2012) and Taleggio cheese (Italy, 235 

2011), both produced in Italy (Amato et al. 2017).  236 

L. monocytogenes types found in foods and clinical isolates only partially overlap (Fig-237 

ures 1 and 2), strengthening the evidence that not all L. monocytogenes strains are equally capa-238 

ble of causing invasive disease. Overall, several studies have shown that lineage I L. monocyto-239 

genes strains are on average more virulent and more frequently associated with human clinical 240 

cases than lineage II strains (Lomonaco, Nucera, Filipello, 2015; Pirone-Davies et al., 2018). 241 

Such partial overlap was also observed in the local SNP clusters, with the majority (n=16, 242 

69.5%) only grouping food/environmental isolates, followed by 26% comprising just clinical 243 

isolates and only 4.3% currently containing both. Among the 81 isolates not currently included in 244 

a SNP cluster, more than a half (n=45, 55.6%) were from food and food production enviroments, 245 

while the rest was from clinical cases (n=22, 27%) or associated with agriculture (i.e. stools and 246 

feeds, n=14, 17.2%). Additionally, a recent study showed that a significant proportion of L. 247 

monocytogenes isolated from food production environments have reduced virulence (Van Stelten 248 

et al. 2016). In light of these data, considering that current regulations in EU and US are based 249 

on the sole detection of L. monocytogenes, it could be useful and more sustainable (e.g. given the 250 

high economic impact due to recalls) to review a risk assessment process that incorporates strain-251 

specific virulence parameters, meaning the identification of virulence genes and their variants 252 

that may be applied as markers either for disease-relevant strains or non-virulent strains (Wal-253 

land et al. 2015). For instance, internalin A and its truncated variants have often been identified 254 
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as possible marker for reduced virulence (Van Stelten et al. 2016). Nevertheless, to date straight-255 

forward identification of such markers are still lacking, and inconsistent evidences have been 256 

reported (Ferreira da Silva et al. 2017). 257 

The different model-data type combinations used in the source attribution analysis 258 

identifed dairy products as the main source of human listeriosis (28% to 53%) (Figures 3 and 4, 259 

S2). Indeed, in Europe half of the reported outbreaks have been linked to dairy products (Lun-260 

dén, Tolvanen, and Korkeala 2004). In the Dutch model, pork appeared to be the second source 261 

of listeriosis (Figure 3). This may be explained by the overrepresentation of pork isolates over 262 

the other sources among the food isolates (28%; S1). This may influence the output, as the Dutch 263 

model is a frequency matching based model. On the other hand, poultry appears to be a more 264 

important source when using STRUCTURE, particularly with MVLST data (18%; Figure 4; S2). 265 

The poultry category comprises both raw meat and cooked preparations and its impact in the 266 

Dutch model may have been overshadowed due to the low number of isolates (n=13; S1). Given 267 

this, STRUCTURE seems to be more reliable than the Dutch model in overcoming representa-268 

tiveness issues.  269 

Because L. monocytogenes is highly susceptible to thermic treatment (i.e. cooking), source at-270 

tribution of the listeriosis cases is usually carried out only on ready-to-eat (RTE) products (Little 271 

et al. 2010; Nielsen et al. 2017), as opposed to diseases like salmonellosis and campylobacterio-272 

sis that are studied also at the reservoir level (Pires et al. 2009; Boysen et al. 2014; Lapo Mug-273 

hini-Gras et al. 2018). Isolates collected at the reservoir level (i.e. non-RTE) were also included 274 

in this study and possible associations were found, in particular with poultry (Figure 4, S2). This 275 

finding underlines how controlling contamination at the reservoir level could be useful, in terms 276 

of preventing cross-contamination that may occur both at the distribution (e.g. deli counters) and 277 
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at the household level. Indeed, it is still poorly understood how L. monocytogenes circulates be-278 

tween animals, humans, and various environments (Walland et al. 2015). In particular, it has 279 

been found that bovine farm environments have high prevalence rates of L. monocytogenes, in-280 

cluding subtypes linked to human listeriosis cases and outbreaks, and cattle appear to contribute 281 

to the amplification and spread of L. monocytogenes in the farm environment (Nightingale et al. 282 

2004). In Italy, Rocha et al. found 60% and 10% of L. monocytogenes isolated from bovine clini-283 

cal cases belonging to ECI and ECX, respectively (Rocha et al. 2013). Poultry is also a recog-284 

nized reservoir of L. monocytogenes and contaminated raw meat poses a concrete risk for the 285 

human consumer (Dhama et al. 2013). In the US, several ECs were found in chicken processing 286 

plants and listeriosis cases and outbreaks have been associated with consumption of undercooked 287 

chicken and RTE poultry products (Lomonaco et al. 2013). Moreover, it is not clear whether 288 

only specific L. monocytogenes subtypes are able to move from the reservoir to the hosts and 289 

cause disease (Walland et al. 2015). Consequently, to improve our understanding of the ecology 290 

of L. monocytogenes, it is important to study the prevalence of L. monocytogenes strains in all 291 

different niches, such as the farm environment, livestock, raw materials, transport vehicles and 292 

containers, manufacturing facilities (e.g. cheese plants) and humans. A recent study identified 293 

eight genes significantly associated with food isolates across L. monocytogenes lineage II strains, 294 

likely playing an important role in the survival and proliferation of L. monocytogenes in the food 295 

environment. The authors indicated the need for futher studies on such genes as such knowledge 296 

can help understand how L. monocytogenes adapts to the host and food environments (Pirone-297 

Davies et al., 2018). 298 

Most other published source attribution studies (mainly on Salmonella and Campylobac-299 

ter) tend to have higher numbers of isolates (Kittl et al. 2013; de Knegt et al. 2016; Mughini-300 
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Gras et al. 2014; Boysen et al. 2014), and it has been reported that is preferable to have at least 301 

100 isolates for each source analysed (Smid et al. 2013). Moreover, selection of isolates should 302 

include contemporaneous sampling of isolates from sources and humans from a fixed geographic 303 

area. In the current study, samples were collected over a fairly broad timeframe (13-year period, 304 

2004-2016). While broad, such a timeframe was necessary to ensure that the strain collection 305 

was as representative as possible within the scope of the study, given the low incidence of lister-306 

iosis. 307 

 Conclusion 308 

Dairy products were identified as the most important source of human listeriosis in the 309 

study area, highlighting the need for specific control measures to reduce L. monocytogenes con-310 

tamination in these products. To date, mainly RTE products have been included in source attribu-311 

tion studies of listeriosis. According to our results, implementing actions currently limited to 312 

RTE products also at the reservoir level, may help reducing the risk of cross-contamination at the 313 

distribution and household levels.  314 

Considering the scarcity of data suited for source attribution of listeriosis, especially in It-315 

aly, this study represents a first stepping-stone for future research. Indeed, this is the first source 316 

attribution study for listeriosis in Italy, and its routine application may help mitigating the impact 317 

of the disease, both at a national and international level, by targeting the main sources. To reach 318 

this goal, collaboration between the different competent authorites in a One Health perspective is 319 

of paramount importance.  320 
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Figure 1 Minimum spanning tree of the 628 Listeria monocytogenes isolates typed with MLST. 514 

Each circle represents a single Sequence Type (ST) indicated on the tree by the corresponding 515 

number. Yellow nodes are group founders and black lines indicate Single Locus Variants (SLV – 516 

isolates with n-1 alleles in common to the linked node). For each ST, isolates obtained from dif-517 

ferent sources are represented by the colours in the legend. The number and proportion of iso-518 

lates for each source are listed in brackets in the legend. 519 

Figure 2 Minimum spanning tree of the 634 Listeria monocytogenes isolates typed with 520 

MVLST. Each circle represents a single Virulence Type (VT) indicated on the tree by the corre-521 

sponding number. Yellow nodes are group founders and black lines indicate Single Locus Vari-522 

ants (SLV – isolates with n-1 alleles in common to the linked node). For each VT, the colours 523 

listed in the legend represent the proportion of isolates from the different sources. Grey slices 524 

indicate isolates not assigned to any of the listed sources. The number and proportion of isolates 525 

for each source are listed in brackets in the legend.   526 

Figure 3 Source attributions of listeriosis human cases with MVLST and MLST data using the 527 

Dutch model (error bars denote 95% confidence intervals). Unknown bar represents clinical cas-528 

es caused by Listeria monocytogenes types not found in any source. 529 

Figure 4 Source attributions of listeriosis human cases with MVLST, MLST and 530 

MVLST+MLST data using the STRUCTURE model (error bars denote 95% confidence inter-531 

vals). 532 



 

Table 1. Number of L. monocytogenes isolates belonging to each of the currently identified Epi-

demic Clones (ECs), among the all the strains collected from clinical cases and 8 different food 

sources. 

 

 Epidemic Clones (ECs)   
Source I II IV V VI VII VIII X XI Total 
Human 30 6 8 17 

 
15 10 2 50 138 

            
Beef 

   
1 

     
1 

Dairy 13 7 4 1 1 4 2 1 8 41 
Fish    

2 
 

1 
   3 

Game 2 
     

3 
  5 

Mixed food   
4 2 2 1 1 

  10 
Mixed Meat 1 

 
1 2 

     4 
Pork 1 

 
6 7 3 

 
1 1 

 19 
Poultry   

1 3 
     4 

Unknown  
1 

 
1 

  
1 

  3 
Total 47 14 24 36 6 21 18 4 58 228 
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Table 2. List of the 48 "global" SNP cluster, comprising 354 isolates from this study and  corre-

lating with 3,178 isolates from different countries/sources avilable on the NCBI PD database (as 

of April 1st, 2019). The number of environmental/food/other and clinical isolates, is indicated as 

those originating from this study over the overall number (i.e. #/#). Bold font was used to high-

light SNP clusters grouping only isolates from Italy. SNP clusters are determined by the NCBI 

Pathogen Isolates pipeline and several information are listed for each: Virulence Type (VT), Ep-

idemic clone (EC), Sequence Type (ST), accession number and analysed version, overall number 

of isolates and specific from this study, and overall number of environmental/food/other and 

clinical isolates.   

Number of isolates  
(from this study/overall) 

Sequence 
Type 
(ST) 

Clonal 
Complex 

(CC) 

Virulence 
Type  
(VT) 

Epidemic 
Clone 
(EC) 

SNP Cluster  
Accession ID and  

Version  
(as of April 1st, 2019)  

Total in 
SNP 

cluster 

Environ./ 
food/other  

Clinical 

ST1 CC1 VT20 ECI 

PDS000003341 .13 2/4 0/0 2/4 
PDS000003348 .26 1/18 1/6 0/12 
PDS000006160 .21 8/9 4/4 4/5 
PDS000041947 .5 1/105 0/25 1/80 

ST2 CC2 VT21 ECIV 
PDS000024430 .11 9/107 7/42 2/65 
PDS000024474 .2 1/3 0/0 1/3 
PDS000024705 .8 3/30 3/24 0/6 

ST3 CC3 VT14 ECVIII 

PDS000006340 .10 3/5 1/3 2/2 
PDS000007098 .4 2/4 0/1 2/3 
PDS000009528 .3 1/2 0/0 1/2 
PDS000009530 .3 1/2 0/1 1/1 

ST5 CC5 VT63 ECVI PDS000032961 .1 1/2 1/2 0/0 

ST6 CC6 
VT19 

ECII 

PDS000024682 .26 1/273 0/73 1/200 
PDS000024688 .2 2/4 0/0 2/4 
PDS000043734 .1 1/2 1/2 0/0 
PDS000024930 .2 1/5 1/1 0/4 

PDS000024684 .9 9/53 
5/14 0/39 

VT163 3/14 1/39 
ST7 CC7 VT56 ECVIII PDS000024618 .8 4/38 4/16 0/22 
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ST8 CC8 VT59 ECV 
PDS000003019 .6 1/3 1/3 0/0 
PDS000025311 .40 20/517 17/271 3/246 

ST9 CC9 
VT11 

* PDS000024241 .19 138/324 136/297 2/27 

 
PDS000011669 .6 6/9 6/9 0/0 

 
PDS000025489 .2 4/6 4/6 0/0 

 
PDS000024263 .2 3/4 3/3 0/1 

ST204 CC204   PDS000024900 .26 6/199 6/172 0/27 
ST18 CC18 VT118   PDS000025244 .1 2/4 0/1 2/3 
ST19 CC19 VT84 

 
PDS000006154 .4 1/14 1/3 0/11 

ST29 CC29 VT74 
  PDS000024749 .4 6/9 1/2 5/7 
  PDS000024751 .2 1/3 1/2 0/1 

ST32 CC32 
VT93  

PDS000037504 .2 1/6 1/1 0/5 
ST388 CC388 

 
PDS000025477 .5 1/10 1/2 0/8 

ST37 CC37 VT61   PDS000032941 .18 4/174 1/111 3/63 
ST38 

CC101 VT80 ECXI 
PDS000001213 .20 10/31 8/15 2/16 

ST101 PDS000024823 .11 1/74 0/55 1/19 
ST59 CC59 VT119   PDS000011242 .8 1/15 1/8 0/7 

ST121 CC121 
VT94  

PDS000024645 .27 22/430 22/403 0/27 

 PDS000024656 .28 7/457 
4/424 1/33 

VT109 
 

2/424 0/33 

ST155 CC155 VT45 
  PDS000005514 .13 9/27 0/5 9/22 
  PDS000006382 .27 1/128 1/102 0/26 

ST217 CC217 VT62 
 

PDS000024967 .21 2/128 2/20 0/108 
ST224 CC224 VT124   PDS000009525 .4 1/3 0/2 1/1 
ST296 CC88 VT8 

 
PDS000003204 .81 1/128 1/104 0/24 

ST325 CC31 VT113   PDS000001093 .24 35/58 30/53 5/5 
ST394 CC415 VT2 

 
PDS000009385 .6 1/10 0/9 1/1 

ST398 CC398 VT100   PDS000024700 .1 13/14 12/13 1/1 
ST425 CC90 VT151 

 
PDS000042587 .1 1/6 0/0 1/6 

ST451 CC451 VT140   PDS000024708 .17 1/69 0/29 1/40 
ST562 CC562 VT166   PDS000004800 .42 3/7 3/6 0/1 

TOTAL   354/3533 269/2345 58/1188 
* includes 21 strains carrying tet(M) (overall this SNP cluster includes two more tet(M)-carrying 
strains from Italy, which were not included in Lomonaco et al., 2018) 
# includes 3 strains carrying tet(M) 
$ includes 1 strain carrying tet  
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Table 3. List of the 20 "local" SNP cluster, comprising isolates (n=73) correlating only with 

other Italian isolates originating from the current study (as of April 1st, 2019). SNP clusters are 

determined by the NCBI Pathogen Isolates pipeline and several information are listed for each: 

Sequence Type (ST), Clonal Complex (CC), Virulence Type (VT), Epidemic clone (EC), acces-

sion number and analysed version, overall number of isolates and specific from this study, and 

overall number of environmental/food/other and clinical isolates. The SNP clusters are divided 

into three groups, those only grouping environmental/food/other isolates, those grouping only 

clinical and those grouping both. Bold font was used to highlight the same VT/ST observed in 

different groups, while * was used to indicate isolates carrying the tet(M) gene.
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Only environmental 
/food / other iso-

lates 

ST1 CC1 VT20 ECI 
PDS000016512 .1 2 0 
PDS000016511 .1 5 0 
PDS000006159 .3 3 0 

ST2 CC2 VT21 ECIV PDS000005749 .4 3 0 

ST3 CC3 VT14 ECVIII PDS000009529 .3 4 0 
ST5 CC5 VT63 ECVI PDS000016519 .1 3 0 

ST9 CC9 

VT11   PDS000006163 .4 8 0 
VT11   PDS000024252 .1 5 0 
VT162   PDS000024740 .1 4 0 
VT11 * PDS000024741 .1 3 0 
VT11   

PDS000025500 
.1 2 0 

VT160   .1 1 0 
VT11   PDS000024296 .1 2 0 

ST36 CC36 VT75   PDS000024703 .1 3 0 
ST427 CC29 VT74   PDS000006155 .5 5 0 

ST663 ST663 VT62 
  PDS000024699 .1 2 0 
  PDS000024702 .1 2 0 

Only clinical iso-
lates 

ST1 CC1 VT20 ECI PDS000024707 .1 0 2 

ST5 CC5 VT63 ECVI PDS000016343 .1 0 3 

ST7 CC7 VT56 ECVII PDS000016346 .1 0 2 
ST14 CC14 VT125   PDS000016335 .1 0 2 
ST54 CC54 VT79   PDS000016380 .1 0 2 
ST398 CC398 VT100   PDS000024922 .1 0 2 

Both 
env./food/other and 

clinical isolates 
ST3 CC3 VT14 ECVIII PDS000006278 .4 2 1 

TOTAL             59 14 
* isolates carrying the tet(M) gene 

      



 

Table 4. Median of ranks and the ranks (in descending order) for each of the 8 food sources and 

each of the 5 model-data type combination considered herein.   

 
 Dutch   STRUCTURE 

  

Source MLST MVLST   MLST MVLST  
MLST 

+ 
MVLST  

  Median 

Dairy 1 1   1 1 1   1 
Poultry 5 7 

 
2 2 2 

 
2 

Mixed food 3 4   3 3 3   3 
Fish 6 6 

 
4 5 4 

 
5 

Mixed meat 4 3   5 6 5   5 
Game meat 7 5 

 
6 4 6 

 
6 

Pork 2 2   7 7 7   7 
Beef 8 8   8 8 8   8 

  



 

29 

 

 

Table 5. Pearson correlation coefficient (rho) matrix to calculate the agreement between attribu-

tions obtained with the 5 model-data type combination considered herein The lowest and highest 

rho values are marked in bold. 

   Dutch STRUCTURE 

  MLST MVLST MLST  MVLST MLST + MVLST 

 Dutch 
MLST  1 * * * * 

MVLST 0.979 1 * * * 

STRUCTURE 
MLST  0.918 0.85 1 * * 

MVLST 0.762 0.702 0.934 1 * 

MLST + MVLST  0.899 0.828 0.997 0.953 1 

 



Highlights 

• Up to 53% of listeriosis cases in Northern Italy are attributable to dairy products 
• 37% of isolates were Epidemic Clones, strains involved in more than one outbreak 
• Poultry accounted for up to 18% listeriosis cases 
• Including isolates at the reservoir level may identify cross-contamination events 
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