109 research outputs found

    Elongator promotes germination and early post-germination growth

    No full text
    The Elongator complex interacts with RNA polymerase II and via histone acetylation and DNA demethylation facilitates epigenetically the transcription of genes involved in diverse processes in plants, including growth, development, and immune response. Recently, we have shown that the Elongator complex promotes hypocotyl elongation and photomorphogenesis in Arabidopsis thaliana by regulating the photomorphogenesis and growth-related gene network that converges on genes implicated in cell wall biogenesis and hormone signaling. Here, we report that germination in the elo mutant was delayed by 6h in the dark when compared to the wild type in a time lapse and germination assay. A number of germination-correlated genes were down-regulated in the elo transcriptome, suggesting a transcriptional regulation by Elongator. We also show that the hypocotyl elongation defect observed in the elo mutants in darkness originates very early in the post-germination development and is independent from the germination delay

    Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression

    Get PDF
    Background: Anthropogenic activities cause metal pollution worldwide. Plants can absorb and accumulate these metals through their root system, inducing stress as a result of excess metal concentrations inside the plant. Ethylene is a regulator of multiple plant processes, and is affected by many biotic and abiotic stresses. Increased ethylene levels have been observed after exposure to excess metals but it remains unclear how the increased ethylene levels are achieved at the molecular level. In this study, the effects of cadmium (Cd) exposure on the production of ethylene and its precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and on the expression of the ACC Synthase (ACS) and ACC Oxidase (ACO) multigene families were investigated in Arabidopsis thaliana. Results: Increased ethylene release after Cd exposure was directly measurable in a system using rockwool-cultivated plants; enhanced levels of the ethylene precursor ACC together with higher mRNA levels of ethylene responsive genes: ACO2, ETR2 and ERF1 also indicated increased ethylene production in hydroponic culture. Regarding underlying mechanisms, it was found that the transcript levels of ACO2 and ACO4, the most abundantly expressed members of the ACO multigene family, were increased upon Cd exposure. ACC synthesis is the rate-limiting step in ethylene biosynthesis, and transcript levels of both ACS2 and ACS6 showed the highest increase and became the most abundant isoforms after Cd exposure, suggesting their importance in the Cd-induced increase of ethylene production. Conclusions: Cadmium induced the biosynthesis of ACC and ethylene in Arabidopsis thaliana plants mainly via the increased expression of ACS2 and ACS6. This was confirmed in the acs2-1acs6-1 double knockout mutants, which showed a decreased ethylene production, positively affecting leaf biomass and resulting in a delayed induction of ethylene responsive gene expressions without significant differences in Cd contents between wild-type and mutant plants

    The plant hormone ethylene restricts Arabidopsis growth via the epidermis

    Get PDF
    The gaseous hormone ethylene plays a key role in plant growth and development, and it is a major regulator of stress responses. It inhibits vegetative growth by restricting cell elongation, mainly through cross-talk with auxins. However, it remains unknown whether ethylene controls growth throughout all plant tissues or whether its signaling is confined to specific cell types. We employed a targeted expression approach to map the tissue site(s) of ethylene growth regulation. The ubiquitin E3 ligase complex containing Skp1, Cullin1, and the F-box protein EBF1 or EBF2 (SCFEBF1/2) target the degradation of EIN3, the master transcription factor in ethylene signaling. We coupled EBF1 and EBF2 to a number of cell type-specific promoters. Using phenotypic assays for ethylene response and mutant complementation, we revealed that the epidermis is the main site of ethylene action controlling plant growth in both roots and shoots. Suppression of ethylene signaling in the epidermis of the constitutive ethylene signaling mutant ctr1-1 was sufficient to rescue the mutant phenotype, pointing to the epidermis as a key cell type required for ethylene-mediated growth inhibition

    Phototropin mediated ultraviolet-B phototropism in etiolated seedlings

    Get PDF
    Low doses of ultraviolet B (UV-B) light have significant effects on plant morphology [1]. In Arabidopsis, many UV-B induced morphological modifications have been ascribed to the UV-B specific receptor UV resistance locus 8 (UVR8). Recent findings in etiolated Arabidopsis seedlings indicate that UVR8 regulated signaling can induce phototropin independent directional bending towards UV-B light [2]. Here, we study the relative contribution of each of these pathways in UV-B regulated phototropism through kinetic analysis of seedlings. The role of phototropins is favored under reduced light conditions and the higher UVR8 response in the UV-B hypersensitive rup1rup2 mutants is interfering with the fast phototropin-regulated phototropic response. Our data suggest that phototropins are the primary receptors for UV-B induced phototropism in etiolated Arabidopsis seedlings, and the RUP-mediated negative feedback pathway prevents UVR8-mediated signaling to affect the phototropin-dependent response. In conclusion, phototropins are the most important receptors for UV-B induced phototropism in etiolated seedlings, and a RUP-mediated negative feedback pathway prevents UVR8 signaling to interfere with the phototropin dependent response

    Ultraviolet radiation from a plant perspective : the plant-microorganism context

    Get PDF
    Ultraviolet (UV) radiation directly affects plants and microorganisms, but also alters the species-specific interactions between them. The distinct bands of UV radiation, UV-A, UV-B, and UV-C have different effects on plants and their associated microorganisms. While UV-A and UV-B mainly affect morphogenesis and phototropism, UV-B and UV-C strongly trigger secondary metabolite production. Short wave (<350 nm) UV radiation negatively affects plant pathogens in direct and indirect ways. Direct effects can be ascribed to DNA damage, protein polymerization, enzyme inactivation and increased cell membrane permeability. UV-C is the most energetic radiation and is thus more effective at lower doses to kill microorganisms, but by consequence also often causes plant damage. Indirect effects can be ascribed to UV-B specific pathways such as the UVR8-dependent upregulated defense responses in plants, UV-B and UV-C upregulated ROS accumulation, and secondary metabolite production such as phenolic compounds. In this review, we summarize the physiological and molecular effects of UV radiation on plants, microorganisms and their interactions. Considerations for the use of UV radiation to control microorganisms, pathogenic as well as non-pathogenic, are listed. Effects can be indirect by increasing specialized metabolites with plant pre-treatment, or by directly affecting microorganisms

    Silver ions increase plasma membrane permeability through modulation of intracellular calcium levels in tobacco BY-2 cells

    No full text
    ions increase plasma membrane permeability for water and small organic compounds through their stimulatory effect on plasma membrane calcium channels, with subsequent modulation of intracellular calcium levels and ion homeostasis. The action of silver ions at the plant plasma membrane is largely connected with the inhibition of ethylene signalling thanks to the ability of silver ion to replace the copper cofactor in the ethylene receptor. A link coupling the action of silver ions and cellular auxin efflux has been suggested earlier by their possible direct interaction with auxin efflux carriers or by influencing plasma membrane permeability. Using tobacco BY-2 cells, we demonstrate here that besides a dramatic increase of efflux of synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthalene acetic acid (NAA), treatment with AgNO3 resulted in enhanced efflux of the cytokinin trans-zeatin (tZ) as well as the auxin structural analogues tryptophan (Trp) and benzoic acid (BA). The application of AgNO3 was accompanied by gradual water loss and plasmolysis. The observed effects were dependent on the availability of extracellular calcium ions (Ca2+) as shown by comparison of transport assays in Ca2+-rich and Ca2+-free buffers and upon treatment with inhibitors of plasma membrane Ca2+-permeable channels Al3+ and ruthenium red, both abolishing the effect of AgNO3. Confocal microscopy of Ca2+-sensitive fluorescence indicator Fluo-4FF, acetoxymethyl (AM) ester suggested that the extracellular Ca2+ availability is necessary to trigger the response to silver ions and that the intracellular Ca2+ pool alone is not sufficient for this effect. Altogether, our data suggest that in plant cells the effects of silver ions originate from the primal modification of the internal calcium levels, possibly by their interaction with Ca2+-permeable channels at the plasma membrane

    Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components

    Get PDF
    Premise of the study: To reach favorable conditions for photosynthesis, seedlings grow upward when deprived of light upon underground germination. To direct their growth, they use their negative gravitropic capacity. Negative gravitropism is under tight control of multiple hormones. Methods: By counting the number of standing plants in a population or by real time monitoring of the reorientation of gravistimulated seedlings of Arabidopsis thaliana, we evaluated the negative gravitropism of ethylene or brassinosteroid (BR) treated plants. Meta-analysis of transcriptomic data on AUX/IAA genes was gathered, and subsequent mutant analysis was performed. Key results: Ethylene and BR have opposite effects in regulating shoot gravitropism. Lack of BR enhances gravitropic reorientation in 2-d-old seedlings, whereas ethylene does not. Lack of ethylene signaling results in enhanced BR sensitivity. Ethylene and BRs regulate overlapping sets of AUX/IAA genes. BRs regulate a wider range of auxin signaling components than ethylene. Conclusions: Upward growth in seedlings depends strongly on the internal hormonal balance. Endogenous ethylene stimulates, whereas BRs reduce negative gravitropism in a manner that depends on the function of different, yet overlapping sets of auxin signaling components

    Ultraviolet-B induced phototropism in Arabidopsis seedlings and inflorescence stems

    Get PDF
    Ultraviolet-B radiation (UV-B - 280-315nm) was only recently described as a phototropism-inducing type of radiation. We have identified that phototropic growth towards UV-B of Arabidopsis hypocotyls and inflorescence stems are both regulated by the same photoreceptor pathways but display a shift in dominance during plant development. The phototropin pathway is dominant in etiolated seedlings (Vanhaelewyn et al., 2016a), while the UVR8 pathway is predominant in inflorescence stems. The role of key-players in the UVR8 pathway, such as HY5 and HYH has been evaluated for their importance in this phototropic response. Unilaterally UV-B irradiated inflorescence stem tissue demonstrates a lateral UVR8-mediated signal gradient. In addition, the function of UVR8 in different cell types was validated by use of cell type specific complementation lines of UVR8 in a uvr8-6 mutant background. This reveals that UVR8 signaling is important in various cell types within the inflorescence stem. As UV-B is known to affect plant hormones (Vanhaelewyn et al., 2016b), we investigated their involvement in this phototropic response. By means of reporter line analysis, mutant analysis, gene expression assays and pharmacological assays, we designate a role for both gibberellins and auxins to UV-B induced phototropism of Arabidopsis inflorescence stems. These combined data provide a mechanistic framework for UV-B induced phototropism

    Meta Analysis of Gene Expression Data within and Across Species

    Get PDF
    Since the second half of the 1990s, a large number of genome-wide analyses have been described that study gene expression at the transcript level. To this end, two major strategies have been adopted, a first one relying on hybridization techniques such as microarrays, and a second one based on sequencing techniques such as serial analysis of gene expression (SAGE), cDNA-AFLP, and analysis based on expressed sequence tags (ESTs). Despite both types of profiling experiments becoming routine techniques in many research groups, their application remains costly and laborious. As a result, the number of conditions profiled in individual studies is still relatively small and usually varies from only two to few hundreds of samples for the largest experiments. More and more, scientific journals require the deposit of these high throughput experiments in public databases upon publication. Mining the information present in these databases offers molecular biologists the possibility to view their own small-scale analysis in the light of what is already available. However, so far, the richness of the public information remains largely unexploited. Several obstacles such as the correct association between ESTs and microarray probes with the corresponding gene transcript, the incompleteness and inconsistency in the annotation of experimental conditions, and the lack of standardized experimental protocols to generate gene expression data, all impede the successful mining of these data. Here, we review the potential and difficulties of combining publicly available expression data from respectively EST analyses and microarray experiments. With examples from literature, we show how meta-analysis of expression profiling experiments can be used to study expression behavior in a single organism or between organisms, across a wide range of experimental conditions. We also provide an overview of the methods and tools that can aid molecular biologists in exploiting these public data

    Evolutionary conservation of plant gibberellin signalling pathway components

    Get PDF
    <p>Abstract</p> <p>Background:</p> <p>Gibberellins (GA) are plant hormones that can regulate germination, elongation growth, and sex determination. They ubiquitously occur in seed plants. The discovery of gibberellin receptors, together with advances in understanding the function of key components of GA signalling in Arabidopsis and rice, reveal a fairly short GA signal transduction route. The pathway essentially consists of GID1 gibberellin receptors that interact with F-box proteins, which in turn regulate degradation of downstream DELLA proteins, suppressors of GA-controlled responses.</p> <p>Results:</p> <p><it>Arabidopsis </it>sequences of the gibberellin signalling compounds were used to screen databases from a variety of plants, including protists, for homologues, providing indications for the degree of conservation of the pathway. The pathway as such appears completely absent in protists, the moss <it>Physcomitrella patens </it>shares only a limited homology with the Arabidopsis proteins, thus lacking essential characteristics of the classical GA signalling pathway, while the lycophyte <it>Selaginella moellendorffii </it>contains a possible ortholog for each component. The occurrence of classical GA responses can as yet not be linked with the presence of homologues of the signalling pathway. Alignments and display in neighbour joining trees of the GA signalling components confirm the close relationship of gymnosperms, monocotyledonous and dicotyledonous plants, as suggested from previous studies.</p> <p>Conclusion:</p> <p>Homologues of the GA-signalling pathway were mainly found in vascular plants. The GA signalling system may have its evolutionary molecular onset in <it>Physcomitrella patens</it>, where GAs at higher concentrations affect gravitropism and elongation growth.</p
    • …
    corecore