554 research outputs found

    Metal contaminated dredged sediment derived soils: a case of diffuse contamination

    Get PDF
    Significant areas in Flanders, Belgium exhibit moderate contamination with trace metals caused by deposition or disposal of contaminated sediments. After disposal, the sediments develop into a soil- like material, on which vegetation is planted or develops spontaneously. Behaviour, cycling and ecosystem impacts of trace metals in calcareous dredged sediment disposal sites in Flanders was investigated. Although soil physico- chemical properties favour a low metal bioavailability, pore water concentrations can be elevated compared to pore water in uncontaminated soils. While metal leaching is not considered to be of concern, several plants accumulate elevated levels of Cd and Zn in leaves. Also metal levels in soil dwelling organisms and small mammals, particularly Cd, are elevated compared to reference situations. This raises concern for an enhanced transfer of metals to the food chain. A comprehensive knowledge of metal behaviour in these sites is essential for developing appropriate management options for these sites

    Leaching behaviour of mercury from hazardous solid waste generated by chlor-alkali industry

    Get PDF
    Through the conventional chlor-alkali production process, highly mercury (Hg) contaminated waste sludge is produced. Improper handling and disposal of this sludge may cause an environmental hazard. The leaching behaviour of Hg of land disposed mercurial sludge, originating from a chlor-alkali plant that still is in operation, was investigated using the German DIN 38414-S4 test. The total mercury content of the samples was above 1500 mg/kg, allowing the material to be classified as hazardous and high mercury waste. Concentrations of Hg in the leachates were higher than 0.02 mg/l stipulated by the 1991 EEC Landfill Directive Draft as a maximum limit for a waste that is to be landfilled. Total Hg contents and leachability differed markedly between the samples, pointing to a heterogeneity in the production of the sludge. The more limited release of Hg from one of the samples might reflect an ageing effect, or might reflect a better quality of the stabilization process at the time of production. Results indicate that the approach used to stabilize the sludge has not been sufficiently effective, and warrant caution about existing disposal sites and future management of these mercury containing waste materials

    Nutrient recycling from bio-digestion waste as green fertilizers

    Get PDF
    In the transition from a fossil to a bio-based economy, it has become an important challenge to maximally recuperate valuable nutrients coming from waste streams. Nutrient resources are rapidly depleting, significant amounts of fossil energy are used for the production of chemical fertilizers, whereas costs for energy and fertilizers are increasing. In the meantime, biogas production through anaerobic digestion produces nutrient-rich digestates. In high-nutrient regions, these products cannot or only sparingly be returned to agricultural land in its crude unprocessed form. The consequent processing of this digestate requires a variety of technologies producing a lot of different derivatives, which could potentially be re-used as green fertilizers in agriculture. As such, a sustainable alternative for fossil-based mineral fertilizers could be provided. The aim of this study is to characterize the physicochemical properties of digestates and derivatives, in order to identify the fertilizer value and potential bottlenecks for agricultural re-use of these products, in line with European legislative constraints. In addition, the economic and ecological benefits of substituting conventional fertilizers by digestates and derivatives are quantified and evaluated. Waste water from acidic air scrubbers for ammonia removal shows potential as N-S-fertilizer, whereas concentrates resulting from membrane filtrated liquid fraction of digestate show promise as N-K-fertilizer. Substituting artificial fertilizers by air scrubber water or membrane filtration concentrates theoretically always results in significant economic and ecological benefits for the agriculturist. Field research is now on-going in order to evaluate the impact on soil and crop production by application of these new green fertilizers
    corecore