18 research outputs found

    Hydrotalcites: A Highly Efficient Ecomaterial For Effluent Treatment Originated From Carbon Nanotubes Chemical Processing

    Get PDF
    It has been reported that a mixture of carboxylated carbonaceous fragments (CCFs), so called oxidation debris, are generated during carbon nanotubes chemical processing using oxidant agents such as HNO3. The elimination of these fragments from carbon nanotubes surface has been point out to be a crucial step for an effective functionalization of the nanotubes as well as for improving the material. However, this process can introduce a potential environmental problem related water contamination because these CCFs can be viewed as a mixture of carbonaceous polyaromatic systems similar to humic substances and dissolved organic matter (DOM). The negative aspects of humic substances and DOM to water quality and wastewater treatment are well known. Since carbon nanotubes industry expands at high rates it is expected that effluent containing oxidation debris will increase since HNO3 chemical processing is the most applied method for purification and functionalization of carbon nanotubes. In this work, we have demonstrated that Hydrotalcites (HT) are highly efficient to remove oxidation debris from effluent solution originated from HNO3-treated multiwalled carbon nanotubes. The strategy presented here is a contribution towards green chemistry practices and life cycle studies in carbon nanotubes field.3041Albrecht, M.A., Evans, C.W., Raston, C.L., Green chemistry and the health implications of nanoparticles (2006) Green Chem., 8, pp. 417-432Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., Galiotis, C., Chemical oxidation of multiwalled carbon nanotubes (2008) Carbon, 46, pp. 833-840Salzmann, C.G., Llewellyn, S.A., Tobias, G., Ward, M.A., Huh, Y., Green, M.L.H., The role of carboxylated carbonaceous fragments in the functionalization and spectroscopy of a single-walled carbon-nanotube material (2007) Advanced Materials, 19, pp. 883-887Fogden, S., Verdejo, R., Cottam, B., Shaffer, M., Purification of single walled carbon nanotubes: The problem with oxidation debris (2008) Chem. Phys. Lett., 460, pp. 162-167Verdejo, R., Lamoriniere, S., Cottam, B., Bismarck, A., Shaffer, M., Removal of oxidation debris from multi-walled carbon nanotubes (2007) Chem. Commun., pp. 513-515Yu, H., Jin, Y.G., Peng, F., Wang, H.J., Yang, J., Kinetically controlled side-wall functionalization of carbon nanotubes by nitric acid oxidation (2008) J. Phys. Chem., 112, pp. 6758-6763Worsley, K.A., Kalinina, I., Bekyarova, E., Haddon, R.C., Functionalization and Dissolution of Nitric Acid Treated Single-Walled Carbon Nanotubes (2009) J. the American Chem. Society, 131, pp. 18153-18158Wang, Z., Korobeinyk, A., Whitby, R.L.D., Meikle, S.T., Mikhalovsky, S.V., Acquah, S.F.A., Kroto, H.W., Direct confirmation that carbon nanotubes still react covalently after removal of acid-oxidative lattice fragments (2010) Carbon, 48, pp. 916-918Liang, L., Singer, P.C., Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water (2003) Environmental Sci. Technol., 37, pp. 2920-2928Nikolaou, A.D., Golfinopoulos, S.K., Lekkas, T.D., Kostopoulou, M.N., DBP levels in chlorinated drinking water: Effect of humic substances (2004) Environmental Monitoring Assessment, 93, pp. 301-319Chien, S.W.C., Wang, M.C., Huang, C.C., Reactions of compost-derived humic substances with lead, copper, cadmium, and zinc (2006) Chemosphere, 64, pp. 1353-1361Garbin, J.R., Milori, D.M.B.P., Simoes, M.L., Da Silva, W.T.L., Neto, L.M., Influence of humic substances on the photolysis of aqueous pesticide residues (2007) Chemosphere, 66, pp. 1692-1698Durjava, M.K., Ter Laak, T.L., Hermens, J.L.M., Struijs, J., Distribution of PAHs and PCBs to dissolved organic matter: High distribution coefficients with consequences for environmental fate modeling (2007) Chemosphere, 67, pp. 990-997Oh, J.M., Biswick, T.T., Choy, J.H., Layered nanomaterials for green materials (2009) J. Materials Chem., 19, pp. 2553-2563Ferreira, O.P., Alves, O.L., MacEdo, J.D., Gimenez, I.D., Barreto, L.S., Ecomaterials: Development and application of functional porous materials for environmental protection (2007) Quimica Nova, 30, pp. 464-467Ferreira, O.P., De Moraes, S.G., Duran, N., Cornejo, L., Alves, O.L., Evaluation of boron removal from water by hydrotalcite-like compounds (2006) Chemosphere, 62, pp. 80-88Goh, K.H., Lim, T.T., Dong, Z.L., Enhanced Arsenic Removal by Hydrothermally Treated Nanocrystalline Mg/Al Layered Double Hydroxide with Nitrate Intercalation (2009) Environmental Sci. Technol., 43, pp. 2537-2543Helland, A., Scheringer, M., Siegris, M., Kastenholz, H.G., Wiek, A., Scholz, R.W., Risk assessment of engineered nanomaterials: A survey of industrial approaches (2008) Environmental Sci. Technol., 42, pp. 640-646Meyer, D.E., Curran, M.A., Gonzalez, M.A., An Examination of Existing Data for the Industrial Manufacture and Use of Nanocomponents and Their Role in the Life Cycle Impact of Nanoproducts (2009) Environmental Sci. Technol., 43, pp. 1256-1263Dillon, A.C., Gennett, T., Jones, K.M., Alleman, J.L., Parilla, P.A., Heben, M.J., A simple and complete purification of single-walled carbon nanotube materials (1999) Advanced Materials, 11, pp. 1354-1358Shao, L., Tobias, G., Salzmann, C.G., Ballesteros, B., Hong, S.Y., Crossley, A., Davis, B.G., Green, M.L.H., Removal of amorphous carbon for the efficient sidewall functionalisation of single-walled carbon nanotubes (2007) Chem. Commun., pp. 5090-5092Tobias, G., Shao, L.D., Ballesteros, B., Green, M.L.H., Enhanced Sidewall Functionalization of Single-Wall Carbon Nanotubes Using Nitric Acid (2009) J. Nanoscience Nanotechnology, 9, pp. 6072-6077Wang, Z.W., Shirley, M.D., Meikle, S.T., Whitby, R.L.D., Mikhalovsky, S.V., The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions (2009) Carbon, 47, pp. 73-79Seida, Y., Nakano, Y., Removal of humic substances by layered double hydroxide containing iron (2000) Water Research, 34, pp. 1487-1494Goh, K.H., Lim, T.T., Dong, Z., Application of layered double hydroxides for removal of oxyanions: A review (2008) Water Research, 42, pp. 1343-1368Rocha, J., Del Arco, M., Rives, V., Ulibarri, M.A., Reconstruction of layered double hydroxides from calcined precursors: A powder XRD and Al-27 MAS NMR study (1999) J. Materials Chem., 9, pp. 2499-2503Rajamathi, M., Nataraja, G.D., Ananthamurthy, S., Kamath, P.V., Reversible thermal behavior of the layered double hydroxide of Mg with Al: Mechanistic studies (2000) J. Materials Chem., 10, pp. 2754-275

    Snapping shrimps of the genus Alpheus Fabricius, 1798 from Brazil (Caridea: Alpheidae): updated checklist and key for identification

    Full text link

    Size-controllable Synthesis And Characterization Of Wide Band Gap Semiconductor Oxide Nanoparticles

    No full text
    The preparation of nanoparticles dispersed into solid hosts is nowadays attracting scientific and technological interest because the properties of these hybrid systems are different and often improved, compared with their isolated counterparts. In this chapter we revise the synthesis of controlled-size semiconductor oxide nanoparticles based on the impregnation and decomposition of transition-metal 2-ethylhexanoate-based precursors in mesoporous hosts aiming to prepare MO2 (M = Ti, Ce, and Sn). The pore size of the host material can control the size of the guest material synthesized within it. The linear mass gain for each cycle in the synthesis process is an advantage of this method, because it allows the control of nanoparticle growth via a layer-by-layer assembly. We discuss the results of X-ray diffraction, transmission electron microscopy, and Raman spectroscopy for SnO2, TiO2 and CeO2 nanocrystals. Raman spectroscopy dependence on nanocrystal size allows the use of this technique as prompt characterization tool for estimating nanocrystal size. © 2010 by Nova Science Publishers, Inc. All rights reserved.295321Moriarty, P., (2001) Rep. Prog. Phys, 64, pp. 297-381Burda, C., Chen, X.B., Narayanan, R., El-Sayed, M.A., (2005) Chem. Rev, 105, pp. 1025-1102Wang, Y., Herron, N., (1991) J. Phys. Chem, 95, pp. 525-532Trindade, T., O'Brien, P., Pickett, N.L., (2001) Chem. Mater, 13, pp. 3843-3858Murray, C.B., Kagan, C.R., Bawendi, M.G., (2000) Annu. Rev. Mater. Sci, 30, pp. 545-610Preining, O.J., (1998) Aerosol Sci, 29, pp. 481-495Cassagneau, T., Hix, G.B., Jones, D.J., Torres, P.M., Rhomari, M., Rozière, J., (1994) J. Mater. Chem, 4, pp. 189-195Chanèac, C., Tronc, E., Jolivet, J.P., (1996) J. Mater. Chem, 6, pp. 1905-1911Bard, A.J., Integrated chemical systems - A chemical approach to nanotechnology (1994), Wiley: New YorkAnpo, M., Aikawa, N., Kobukawa, Y., Che, M., Louis, C., Giamello, E., (1985) J. Phys. Chem, 89, pp. 5017-5021Xu, W., Raftery, D.J., (2001) Phys. Chem. B, 105, pp. 4343-4349Batzill, M., Diebold, U., (2005) Prog. Surf. Sci, 79, pp. 47-154Carp, O., Huisman, C.L., Reller, A., (2004) Prog. Solid State Chem, 32, pp. 33-177Trovarelli, A., (1996) Catal. Rev. Sci. Eng, 38, pp. 439-520Darsillo, M.S., Gafney, H.D., Paquete, M.S., (1987) J. Am. Chem. Soc, 109, pp. 3275-3286Kim, J.C., Kim, Y.N., Chin, E.O., Hura, N.H., Yoon, S.B., Yu, J.S., (2003) J. Mater. Res, 18, pp. 780-783Kasuga, T., Kume, H., Abe, Y., (1997) J. Am. Ceram. Soc, 80, pp. 777-780Reisfeld, R., Saraidarov, T., Minti, H., Wodnicka, K., (2003) Opt. Appl, 33, pp. 61-73Sunil, D., Gafney, H.D., Rafailovich, M.H., Sokolov, J., Gambino, R.J., Huang, D.M., (2003) J. Non-Cryst. Solids, 319, pp. 154-162Cao, G., Rabenberg, L.K., Nunn, C.M., Mallouk, T.E., (1991) Chem. Mater, 3, pp. 149-156Zarbin, A.J.G., Vargas, M.D., Alves, O.L., (1999) J. Mater. Chem, 9, pp. 519-523Maia, D.J., De Paoli, M.A., Alves, O.L., Zarbin, A.J.G., Neves, S., (2000) Quím. Nova, 23, pp. 204-215Gimenez, I.F., Alves, O.L., (2002) Glass Technol, 43 C, pp. 166-169Sotomayor, P.T., Raimundo Jr., I.V., Zarbin, A.J.G., Rohwedder, J.J.R., Oliveira Neto, G., Alves, O.L., (2001) Sens.Actuators B, 74, pp. 157-162Khushalani, D., Hasenzahl, S., Mann, S., (2001) J. Nanosci. Nanotechnol, 1, pp. 129-132Wang, S.P., Westcott, S., Chen, W., (2002) J. Phys. Chem. B, 106, pp. 11203-11209Mazali, I.O., Alves, O.L., (2001) J. Mater. Sci. Lett, 20, pp. 2113-2117Volf, M.B., Technical approach to glass (1990), Elsevier : AmsterdamAlves, O.L., Ronconi, C.M., Galembeck, A., (2002) Quím. Nova, 25, pp. 69-77Mazali, I.O., Alves, O.L., (2005) J. Phys. Chem. Solids, 66, pp. 37-46Mazali, I.O., Souza Filho, A.G., Neto, B.C.V., Mendes Filho, J., Alves, O.L., (2006) J. Nanoparticle Res, 8, pp. 141-148Mazali, I.O., Romano, R., Alves, O.L., (2006) Thin Solid Films, 495, pp. 64-67Mazali, I.O., Viana, B.C., Alves, O.L., Mendes Filho, J., Souza Filho, A.G., (2007) J. Phys. Chem. Solids, 68, pp. 622-627Cangussu, D.C.C., Nunes, W.C., Correa, H.L.S., Knobel, M., Macedo, W.A.A., Alves, O.L., Souza Filho, A.G., Mazali, I.O., (2009) J. Appl. Phys, 105, pp. 013901-013907Mazali, I.O., Alves, O.L., (2004) J. Mater. Sci, 39, pp. 1987-1995www.corning.com/docs/specialtymaterials/pisheets/Vycor%207930.pdf, Available inVest, R.W., (1990) Ferroelectrics, 102, pp. 53-68Vest, R.W., Singaram, S., (1986) Mater. Res. Soc. Symp. Proc, 60, pp. 35-42Hagemeyer, A., Hogan, Z., Schlichter, M., Smaka, B., Streukens, G., Turner, H., Volpe Jr., A., Yaccato, K., (2007) Appl. Catal. A, 317, pp. 139-148Wang, S., Huang, J., Zhao, Y., Wang, S., Wu, S., Zhang, S., Huang, W., (2006) Mater. Lett, 60, pp. 1706-1709Khakpash, N., Simchi, A., Kohi, P., (2009) J. Alloys Comp, 470, pp. 289-293Epifani, M., Comini, E., Diaz, R., Arbiol, J., Siciliano, P., Sberveglieri, G., Morante, J.R., (2006) Sens. Actuators B, 118, pp. 105-109Zhao, Y., Zhou, Q., Liu, L., Xu, J., Yan, M., Jiang, Z., (2006) Electrochim. Acta, 51, pp. 2639-2645Bose, A.C., Kalpana, D., Thangadurai, P., Ramasamy, S., (2002) J. Power Sources, 107, pp. 138-141Wu, Q.H., Song, J., Kang, J., Dong, Q.F., Wu, S.T., Sun, S.G., (2007) Mater. Lett, 61, pp. 3679-3684Baraton, M.I., Merhari, L., Ferkel, H., Castagnet, J.F., (2002) Mater. Sci. Eng. C, 18, pp. 315-321Lee, K., Lee, D., Ahn, H., (2004) Mater. Lett, 58, pp. 3122-3125Jenkins, R., Snyder, R.L., Introduction to X-ray powder diffractometry (1996), Wiley: New YorkPowder Diffraction File Search Manual-Inorganic (1973) Published by the Joint Committee on Powder Diffractions Standards, , Card 41-1445Anandan, S., Yoon, M., (2003) J. Photochem. Photobiol. C, 4, pp. 5-18Linseblinger, A.L., Lu, G.Q., Yates, J.T., (1995) Chem. Rev, 95, pp. 735-758Uchida, S., Chiba, R., Tomiha, M., Masaki, N., Shirai, M., (2003) Nanotechnol. Mesostruct. Mater. Stud. Surf. Sci. Catal, 146, pp. 799-802Tanemura, S., Miao, L., Jin, P., Kaneko, K., Terai, A., Nabatova-Gabain, N., (2003) Appl. Surf. Sci, 212, pp. 654-660Liqiang, J., Xiaojun, S., Baifu, X., Baiqi, W., Weimin, C., Honggang, F., (2004) J. Solid State Chem, 177, pp. 3375-3382Yan, W., Chen, B., Mahurin, S.M., Hagaman, E.W., Dai, S., Overbury, S.H., (2004) J. Phys. Chem. B, 108, pp. 2793-2796Busca, G., Ramis, G., Amores, J.M.G., Escribano, V.S., Piaggio, P., (1994) J. Chem. Soc. Faraday Trans, 90, pp. 3181-3190Ding, X.Z., Liu, X.H., (1998) J. Mater. Res, 13, pp. 2556-2559Powder Diffraction File Search Manual-Inorganic (1973), Published by the Joint Committee on Powder Diffractions Standards, (a) Card 21-1276(b) Card 19-0869Spurr, R.A., Myers, H., (1957) Anal. Chem, 29, pp. 760-762Cristallo, G., Roncari, E., Rinaldo, A., Trifiro, F., (2001) Appl. Catal. A, 209, pp. 249-256Ousi-Benomar, W., Xue, S.S., Lessard, R.A., Singh, A., Wu, Z.L., Kuo, P.K., (1994) J. Mater. Res, 9, pp. 970-979Goodhew, P.J., Humphreys, J., Beanland, R., Electron microscopy and analysis (2001), 3rd ed. Taylor & Francis: LondonWatteau, F., Villemin, G., (2001) Eur. J. Soil Sci, 52, pp. 385-396Bersani, D., Lottici, P.P., Ding, X.Z., (1998) Appl. Phys. Lett, 72, pp. 73-75Kelly, S., Pollak, F.H., Tomkiewicz, M., (1997) J. Phys. Chem. B, 101, pp. 2730-2734Richter, H., Wang, Z.P., Ley, L., (1981) Solid State Commum, 39, pp. 625-629Kumar, K.N.P., Keizer, K., Burggraaf, A., (1994) J. Mater. Sci. Lett, 13, pp. 59-61Zhang, Y.H., Chan, C.K., Porter, J.F., Guo, W., (1998) J. Mater. Res, 13, pp. 2602-2609Ohsaka, T., Izumi, F., Fujiki, Y., (1978) J. Raman Spectrosc, 7, pp. 321-324Chun, H., Yizhong, W., Hongxiao, T., (2001) Appl. Catal. B, 30, pp. 277-285Steele, B.C.H., (1984) Solid State Ionics, 12, pp. 391-406McCarty, J.G., Wise, H., (1990) Catal. Today, 8, pp. 231-248Mogensen, M., Sammes, N.M., Tompsett, G.A., (2000) Solid State Ionics, 129, pp. 63-94Martinelli, G., Carrota, M.C., Ferroni, M., Sadaoka, Y., Traversa, E., (1999) Sens. Actuators B, 55, pp. 99-110Chikyow, T., Bedair, S.M., Tye, L., El-Marsy, N.A., (1994) Appl. Phys. Lett, 65, pp. 1030-1032Kim, C.G., (2001) Appl. Phys. Lett, 79, pp. 3047-3049Morshed, A.H., Moussa, M.E., Bedair, S.M., Leonard, R., Liu, S.X., El-Masry, N., (1997) Appl. Phys. Lett, 70, pp. 1647-1649Walkenhorst, A., Schimitt, M., Adrian, H., Petersen, K., (1994) Appl. Phys. Lett, 64, pp. 1871-1873Zhang, F., Chan, S.W., Spanier, J.E., Apak, E., Jin, Q., Robinson, R.D., Herman, I.P., (2002) Appl. Phys. Lett, 80, pp. 127-129Zhou, X.D., Huebner, W., Anderson, H.U., (2002) Appl. Phys. Lett, 80, pp. 3814-3816Weber, W.H., Hass, K.C., McBride, J.R., (1993) Phys. Rev. B, 48, pp. 178-185Spanier, J.E., Robinson, R.D., Zhang, F., Chan, S.W., Herman, I.P., (2001) Phys. Rev. B, 64, pp. 245407-245414Tsunekawa, S., Fukuda, T., Kasuya, A., (2000) J. Appl. Phys, 87, pp. 1318-1321Zhou, X.D., Huebner, W., (2001) Appl. Phys. Lett, 79, pp. 3512-3514Powder Diffraction File Search Manual-Inorganic (1973) Published by the Joint Committee on Powder Diffractions Standards, , Card 34-0394Keramidas, V.G., White, W.B., (1973) J. Chem. Phys, 59, pp. 1561-1562Kosacki, I., Suzuki, T., Anderson, H.U., Colomban, P., (2002) Solid State Ionics, 149, pp. 99-105Rekhi, S., Saxena, S.K., Lazor, P., (2001) J. Appl. Phys, 89, pp. 2968-297

    Vibrational Spectra Of α-ge(hpo4)2· H2o Compound

    No full text
    We have measured Raman and infrared spectra of α-Ge(HPO 4)2·H2O compound at room temperature. The analysis of vibrational modes indicated the presence of two non-equivalent HPO4 2- units in agreement with 31P nuclear magnetic resonance measurements. A tentative assignment of all the observed modes is proposed based on the previous works reported for other hydrogenphosphate-based compounds. © 2005 Elsevier B.V. All rights reserved.402209212Pillion, J.E., Thompson, M.E., (1991) Chem. Mater., 3, p. 777Ding, Y., Jones, D.J., Maireles-Torres, P., Rozière, J., (1995) Chem. Mater., 7, p. 562Gonçalves, A.B., Mangrich, A.S., Zarbin, A.J.G., (2000) Synth. Met., 114, p. 119Zarbin, A.J., Maia, D.J., De Paoli, M.A., Alves, O.L., (1999) Synth. Met., 102, p. 1277Everest, D.A., (1953) J. Chem. Soc., 4, p. 4117Lelong, B., (1964) Ann. Chim. France, 9, p. 229Avduevskaya, K.A., Tananaev, I.V., (1963) Russ. J. Inorg. Chem., 8, p. 527Avduevskaya, K.A., Tananaev, I.V., (1965) Russ. J. Inorg. Chem., 10, p. 197Winkler, A., Thilo, E., (1966) Z. Anorg. Allg. Chem., 346, p. 92La Ginestra, A., Galli, P., Berardelli, M.L., Massuci, M.A., (1984) J. Chem. Soc. Dalton Trans., 4, p. 527Romano, R., Ruiz, A.I., Alves, O.L., (2004) J. Solid State Chem., 177, p. 1520Albertsson, J., Oskarsson, E., Tellgren, R., Thomas, J.O., (1971) J. Phys. Chem., 81, p. 1574Hadrich, A., Lautie, A., Mhiri, T., (2000) J. Raman Spectrosc., 31, p. 587Hadrich, A., Lautie, A., Mhiri, T., Romain, F., (2001) Vib. Spectrosc., 26, p. 51Slade, R.C.T., Knowles, J.A., Jans, D.J., Rozière, J., (1997) Solid State Ionics, 96, p. 9Horsley, S.E., Nowel, D.V., Stewart, D.T., (1974) Spectrochim. Acta, 30, p. 63

    Understanding The Interaction Of Multi-walled Carbon Nanotubes With Mutagenic Organic Pollutants Using Computational Modeling And Biological Experiments

    No full text
    Carbon nanotubes (CNTs) are very promising materials to remove pollutants from the environment. To develop safe, efficient technologies, it is necessary to understand the mechanisms of interaction between CNTs and pollutants. This requires innovative, interdisciplinary approaches. Detailed chemical analysis of the CNTs along with computational modeling can provide important information about the mechanisms of interaction. If biological experiments are included in these studies, useful complementary information is obtained. To exemplify the use of this approach, we present a case study in which detailed calculations and the Salmonella mutagenicity assay were applied to elucidate how multi-walled CNTs interact with 1-nitropyrene, an important mutagenic pollutant. © 2011 Elsevier Ltd.303437446Baughman, R.H., Zakhidov, A.A., de Heer, W.A., (2002) Science (Washington, DC), 297, p. 787Dresselhaus, M.S., (2010) ACS Nano, 4, p. 4344Kostarelos, K., Bianco, A., Prato, M., (2009) Nat. Nanotechnol., 4, p. 627Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Watanabe, Z.L.F., Biris, A.S., (2009) ACS Nano, 3, p. 3221Wang, J., Lin, Y.H., (2008) Trends Anal. Chem., 27, p. 619Upadhyayula, V.K.K., Deng, S.G., Mitchell, M.C., Smith, G.B., (2009) Sci. Total Environ., 408, p. 1Ren, X., Chen, C., Nagatsu, M., Wang, X., (2010) Chem. Eng., , Journal, (in press). doi:10.1016/j.cej.2010.08.045Mauter, M.S., Elimelech, M., (2008) Environ. Sci. Tech., 42, p. 5843Kundu, S., Wang, Y., Xia, M., Muhler, M., (2008) J. Phys. Chem. C., 112, p. 16869Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., (2008) Carbon, 46, p. 833Peng, X., Jia, J., Luan, Z., (2009) J. Chem. Technol. Biotechnol., 84, p. 275Sheng, G.D., Shao, D.D., Ren, X.M., Wang, X.Q., Li, J.X., Chen, Y.X., Wang, X.K., (2010) J. Hazard. Mater., 178, p. 505Smajda, R., Mionic, M., Duchamp, M., Andresen, J.C., Forró, L., Magrez, A., (2010) Phys. Status Solidi C, 7, p. 1236Köhler, A.R., Som, C., Helland, A., Gottschalk, F., (2008) J. Cleaner Prod., 16, p. 927Cornelissen, G., Gustafsson, O., Bucheli, T.D., Koelmans, M.O., Van Noort, P.M., (2005) Environ. Sci. Technol., 39, p. 6881Ferguson, P.L., Chandler, G.T., Templeton, R.C., DeMarco, A., Scrivens, W.A., Englehart, B.A., (2008) Environ. Sci. Technol., 42, p. 3879Pérez, S., Farré, M., Barceló, D., (2009) Trends Anal. Chem., 28, p. 820Farré, M., Pérez, S., Kantiani, L., Barceló, D., (2008) Trends Anal. Chem., 27, p. 991Petersen, E.J., Pinto, R.A., Mai, D.J., Landrum, P.F., Weber, W.J., (2010) Environ. Sci. Technol., , in press, doi:10.1021/es10302Scheringer, M., (2008) Nat. Nanotechnol., 3, p. 322Kahru, A., Dubourguier, H.C., (2010) Toxicology, 269, p. 105Schatz, G.C., (2007) Proc. Natl. Acad. Sci. USA, 104, p. 6885Ohno, K., Esfarjani, K., Kawazoe, Y., (2000) Computational Materials Science. From Ab Initio to Monte Carlo Methods, (Springer Series in Solid-State Sciences) Springer, , New York, USAMartin, R.M., (2004) Electronic Structure: Basic Theory and Practical Methods, , Cambridge University Press, Cambridge, UKRapaport, D.C., (2004) The Art of Molecular Dynamics Simulation, , Cambridge University Press, Cambridge, UKKarplus, M., McCammon, J.A., (2002) Nat. Struct. Biol., 9, p. 646Barnard, A.S., (2010) Rep. Progr. Phys., 73, p. 086502Guo, G., Wang, F., Sun, H., Zhang, D., (2008) Int. J. Quantum Chem., 108, p. 203Yim, W.L., Gong, X.G., Liu, Z.F., (2003) J. Phys. Chem. B, 107, p. 9363Fagan, S.B., Santos, E.J.G., Souza Filho, A.G., Mendes Filho, J., Fazzio, A., (2007) Chem. Phys. Lett., 437, p. 79Fagan, S.B., Souza Filho, A.G., Lima, J.O.G., Mendes Filho, J., Ferreira, O.P., Mazali, I.O., Alves, O.L., Dresselhaus, M.S., (2004) Nano Lett., 4, p. 1285Tournus, F., Latil, S., Heggie, M.I., Charlier, J.C., (2005) Phys. Rev. B: Condens. Matter, 72, p. 075431Tournus, F., Charlier, J.C., (2005) Phys. Rev. B: Condens. Matter, 71, p. 165421Irving, D.L., Sinnott, S.B., Lindner, A.S., (2004) Chem. Phys. Lett., 389, p. 96Long, R.Q., Yang, R.T., (2001) J. Am. Chem. Soc., 123, p. 2058Li, Y.H., Wang, S.G., Zhang, X.F., Wei, J.Q., Xu, C.L., Luan, Z.K., Wu, D.H., (2003) Mater. Res. Bull., 38, p. 469Lu, C.S., Chung, Y.L., Chang, K.F., (2005) Water Res., 39, p. 1183Chen, Z.G., Zhang, L.S., Tang, Y.W., Jia, Z.J., (2006) Appl. Surf. Sci., 252, p. 2933Ji, L., Chen, W., Duan, L., Zhu, D., (2009) Environ. Sci. Tech., 43, p. 2322Ji, L., Chen, W., Zheng, S., Xu, Z., Zhu, D., (2009) Langmuir, 25, p. 11608Yang, K., Wang, X.L., Zhu, L.Z., Xing, B.S., (2006) Environ. Sci. Tech., 40, p. 5804Pan, B., Xing, B.S., (2008) Environ. Sci. Tech., 42, p. 9005Lam, C., James, J.T., McCluskey, R., Arepalli, S., Hunter, R.L., (2006) Crit. Rev. Toxicol., 36, p. 189Smart, S.K., Cassady, A.I., Lu, G.Q., Martin, D.J., (2006) Carbon, 44, p. 1034Oberdorster, G., (2010) J. Internal Med., 267, p. 89Koyama, S., Endo, M., Kim, Y.A., Hayashi, T., Yanagisawa, T., Osaka, K., Koyama, H., Kuroiwa, N., (2006) Carbon, 44, p. 1079Pauluhn, J., (2010) Toxicol. Sci., 113, p. 226Kolosnjaj-Tabi, J., Hartman, K.B., Boudjemaa, S., Ananta, J.S., Morgant, G., Szwarc, H., Wilson, L.J., Moussa, F., (2010) ACS Nano, 4, p. 1481Elder, A., (2009) Nat. Nanotechnol., 4, p. 409Bai, Y.H., Zhang, Y., Zhang, J.P., Mu, Q.X., Zhang, W.D., Butch, E.R., Snyder, S.E., Yan, B., (2010) Nat. Nanotechnol., 5, p. 683Migliore, L., Saracino, D., Bonelli, A., Colognato, R., D'Errico, M.R., Magrini, A., Bergamaschi, A., Bergamaschi, E., (2010) Environ. Mol. Mutagen., 51, p. 294Patlolla, A., Patlolla, B., Tchounwou, P., (2010) Mol. Cell. Biochem., 338, p. 225Singh, N., Manshian, B., Jenkins, G.J.S., Griffiths, S.M., Williams, P.M., Maffeis, T.G.G., Wright, C.J., Doak, S.H., (2009) Biomaterials, 30, p. 3891Di Sotto, A., Chiaretti, M., Carru, G.A., Belluci, S., Mazzanti, G., (2009) Toxicol. Lett., 184, p. 192Wirnitzer, U., Herbold, B., Voetz, M., Ragot, J., (2009) Toxicol. Lett., 186, p. 160Szendi, K., Varga, C., (2008) Anticancer Res., 28, p. 348Kim, J.S., Lee, K., Lee, Y.H., Cho, H.S., Kim, K.H., Choi, K.H., Lee, S.H., Yu, I.J., (2010) Arch. Toxicol., , in press, doi:10.1007/s00204-010-0574-0Landsiedel, R., Kapp, M.D., Schulz, M., Wiench, K., Oesch, F., (2009) Mutat. Res., 681, p. 241Maron, D.M., Ames, B.N., (1983) Mutat. Res., 113, p. 173Claxton, L.D., Umbuzeiro, G.A., DeMarini, D.M., (2010) Environ. Health Perspect., 118, p. 1515Hagiwara, Y., Watanabe, M., Oda, Y., Sofuni, T., Nohmi, T., (1993) Mutat. Res., 291, p. 171Matsui, K., Yamada, M., Imai, M., Yamamoto, K., Nohmi, T., (2006) DNA Repair, 5, p. 465Umbuzeiro, G.A., Roubicek, D.A., Rech, C.M., Sato, M.I., Claxton, L.D., (2004) Chemosphere, 54, p. 1589Mermelstein, R., Kiriazides, D.K., Butler, M., McCoy, E., Rosenkranz, H.S., (1981) Mutat. Res., 89, p. 187Blasco, C., Picó, Y., (2009) Trends Anal. Chem., 28, p. 745Barnard, A.S., (2009) Nanoscale, 1, p. 89Umbuzeiro, G.A., Franco, A., Magalhães, D., de Castro, F.J.V., Kummrow, F., Rech, C.M., de Carvalho, L.R.F., Vasconcellos, P.C., (2008) Environ. Mol. Mutagen., 49, p. 249Monge, M.E., D'Anna, B., Mazri, L., Giroir-Fendler, A., Ammann, M., Donaldsonc, D.J., George, C., (2010) Proc. Natl. Acad. Sci. USA, 107, p. 6605Bamford, H.A., Bezabeh, D.Z., Schantz, S., Wise, S.A., Baker, J.E., (2003) Chemosphere, 50, p. 575Andersson, H., Piras, E., Demma, J., Hellman, B., Brittebo, E., (2009) Toxicology, 262, p. 57Koyama, S., Kim, Y.A., Hayashi, T., Takeuchi, K., Fujii, C., Kuroiwa, N., Koyama, H., Endo, M., (2009) Carbon, 47, p. 1365Freiman, S., Hooker, S., Migler, K., Arepalli, S., (2008) Measurement Issues in Single Wall Carbon Nanotubes, NIST Recommended Practice Guide, Special Publication 960-19, , NIST, Gaithersburg, MD, USAOrganization for Economic Co-Operation and Development (OECD), Guideline for Testing of Chemicals 471 (1997) Bacterial Reverse Mutation Test, OECD, Paris, FranceYang, K., Xing, B., (2010) Chem. Rev., 110, p. 5989Chen, W., Duan, L., Zhu, D., (2007) Environ. Sci. Technol., 41, p. 8295Cançado, L.G., Takai, K., Enoki, T., Endo, M., Kim, Y.A., Mizusaki, H., Jorio, A., Pimenta, M.A., (2006) Appl. Phys. Lett., 88, p. 163106Hashimoto, A., Suenaga, K., Gloter, A., Urita, K., Iijima, S., (2004) Nature (London), 430, p. 870Dubinin, M.M., (1966) Chemistry and Physics of Carbon, , Marcel Dekker, New York, USA, P.L. Walker (Ed.)Peng, X., Li, Y., Luan, Z., Di, Z., Wang, H., Tian, B., Jia, Z., (2003) Chem. Phys. Lett., 376, p. 154Artacho, E., Anglada, E., Diéguez, O., Gale, J.D., García, A., Junquera, J., Martin, R.M., Soler, J.M., (2008) J. Phys. B: Condens. Matter, 20, p. 064208Boys, S.F., Bernardi, F., (1970) Mol. Phys., 19, p. 55

    Desempenho e características da carcaça de cordeiros submetidos aos modelos de produção orgânico e convencional

    No full text
    Avaliou-se o desempenho de 48 cordeiros Ile de France submetidos aos modelos de produção orgânico e convencional desde o nascimento até o abate, aos 32kg de peso corporal. Foi observado que peso ao nascer, peso ao desmame, peso corporal, peso corporal ao abate, idade do nascimento ao desmame, ingestão de matéria seca e ganhos de peso corporal do nascimento ao desmame e do desmame ao abate não foram influenciados (P>0,05) pelos modelos de produção estudados. Idade do desmame ao abate e idade do nascimento ao abate foram influenciados (P<0,05) pelos modelos de produção. Peso corporal, peso corporal ao abate, peso do corpo vazio, pesos da carcaça quente e fria, rendimentos verdadeiros de carcaça quente e fria e perdas ao resfriamento e ao jejum não foram influenciados (P>0,05) pelos modelos de produção estudados. Cordeiros submetidos ao modelo de produção convencional atingiram peso de abate em menor tempo, fato que, dos pontos de vista zootécnico e econômico, é mais propício e vantajoso ao produtor

    Peso à cobrição e ganho de peso durante a gestação de cabras nativas, exóticas e mestiças no semi-árido Mating weight and weight gain during gestation of native, exotic and crossbred goats in the semi-arid

    No full text
    Avaliaram-se os efeitos de mês, ano, ordem de parto e tipo de parto sobre o peso à cobrição (PC) e o ganho de peso durante a gestação (GP), respectivamente, de 753 e 527 cabras nativas Canindés, 463 e 333 cabras exóticas Anglo-nubianas, 374 e 296 Alpinas, 151 e 87 de mestiças ½ Alpina (A) ½ Sem Raça Definida (SRD), 92 e 73 ¾ Alpina (A) ¼ SRD, criadas na Estação Experimental de Pendência - EMEPA-PB, Soledade-PB, na microrregião semi-árida da Paraíba, em regime semi-intensivo, no período de 1980 a 1994. O mês foi significativo sobre os pesos à cobrição das matrizes Canindés, Anglo-nubianas, ½ A ½ SRD e ¾ A ¼ SRD. O ano influenciou o PC de todos os grupos genéticos. O efeito do ano sobre o GP foi significativo para as cabras Canindés, Anglo-nubianas, ½ A ½ SRD e Alpinas. O peso à cobrição elevou-se com o aumento da ordem de parto e o GP foi mais evidente entre as cabras de primeiro parto. O tipo de parto foi significativo sobre o GP das matrizes nubianas, ¾ A ¼ SRD e Alpina, que tiveram maiores ganhos quando pariram apenas um cabrito. A raça influenciou o PC e o GP de todas as matrizes. A raça nativa foi a mais leve e com o melhor ganho de peso; as exóticas, as mais pesadas e com GP inferiores aos da raça Canindé e da mestiça ½ A ½ SRD; e a mestiça ¾ A ¼ SRD, a raça com peso corporal (PC) e GP semelhantes às exóticas. Concluiu-se que a composição genética dos animais e os fatores ambientais, como mês, ano, ordem e tipo de parto, refletiram sobre o peso à cobrição e o ganho de peso durante a gestação das matrizes estudadas.<br>The effects of month, year, order and type parturition on mating weight (MW), weight gain during gestation (WG), respectively, of 753 and 527 Caninde native goats, 463 and 333 exotic Anglo Nubian and 374 and 296 Alpine goats, 151 and 87 crossbred ½ Alpine ½ SRD, and 92 and 73 ¾Alpine ¼SRD goats, raised in the Experimental Station of the Governmental Research Institute (EMEPA-PB), Soledade - Paraiba - Brazil, in the period from 1980 to 1994. The effect of month was significant on MW of the Caninde, Anglo Nubian and crossbred goats. The year influenced MW of all genetic groups and effect on WG was significant for Caninde, Anglo Nubian, ½A ½SRD and Alpine goats. Mating weight increased as parturition order increased and WG was evident in the goats of first kidding. Type parturition showed significant effect on WG of Nubian, ¾ A ¼ SRD and Alpine goats, that showed higher WG when had single kidding. Significant difference among genetic groups was observed for MW and WG. The native goats were more weightless than the exotic and crossbred goats, however showed better weight gain during gestation. There was superiority of mating weights of exotic than the native and crossbred goats. The animal genetic composition and environmental factors, as month, year, order and type of birth, affected mating weight and weight gain during the gestation of the studied flock

    Efeito de dietas com níveis crescentes de caroço de algodão integral sobre a composição química e o perfil de ácidos graxos da carne de cordeiros Santa Inês Effect of diets with increasing levels of whole cotton seed on chemical composition and fatty acid profile of Santa Inez (Santa Inês) lamb meat

    No full text
    Esta pesquisa foi realizada com o objetivo de avaliar o efeito da inclusão (0, 20, 30 e 40%) de caroço de algodão integral (Gossypium hirsutum) na dieta sobre a composição química e o perfil de ácidos graxos da carne de cordeiros Santa Inês. Foram utilizados 24 cordeiros machos não-castrados (peso corporal inicial de 19,0 ± 0,2 kg e 4 meses de idade), todos criados em regime de confinamento em baias individuais. Os níveis de caroço de algodão integral não afetaram a composição centesimal e os percentuais de colesterol e fosfolipídios da carne ovina. Entretanto, houve diferença entre os percentuais dos ácidos graxos mirístico, palmítico e linolênico e entre a relação C18:0 + C18:1 / C16:0. Do ponto de vista nutricional, a utilização de caroço de algodão integral na dieta pode ser recomendada, durante períodos curtos, em níveis de até 40% para ovinos em terminação. Ressalta-se que o caroço de algodão integral é um subproduto economicamente viável por apresentar baixo custo de produção em comparação ao milho e à soja.<br>The objective of this research was to evaluate the effect of inclusion (0, 20, 30 and 40%) of whole cottonseed (Gossypium hirsutum) in the diet on chemical composition and fatty acids profile of Santa Inez sheep meat. Twenty four no castrated male sheep were used, (initial 19.0 ± 0.2 kg BW and 4 month old), all kept in confinement regime in individual stalls. The levels of whole cottonseed did not affect chemical composition and the percentages of cholesterol and phospholipids of the lamb meat. However, there was difference among the percentages of the miristic, palmitic and linolenic fatty acids and also to the relationship C18:0 + C18:1 / C16:0. At nutritional point of view, the utilization of whole cottonseed could be recommended, during short periods, up to the level of 40% for finishing animals. In addition, whole cottonseed is a by-product economically viable for presenting low production cost as compared to corn and soybean
    corecore