33 research outputs found

    Biochemical properties of Paracoccus denitrificans FnrP:Reactions with molecular oxygen and nitric oxide

    Get PDF
    In Paracoccus denitrificans, three CRP/FNR family regulatory proteins, NarR, NnrR and FnrP, control the switch between aerobic and anaerobic (denitrification) respiration. FnrP is a [4Fe-4S] cluster containing homologue of the archetypal O2 sensor FNR from E. coli and accordingly regulates genes encoding aerobic and anaerobic respiratory enzymes in response to O2, and also NO, availability. Here we show that FnrP undergoes O2-driven [4Fe-4S] to [2Fe-2S] cluster conversion that involves up to 2 O2 per cluster, with significant oxidation of released cluster sulfide to sulfane observed at higher O2 concentrations. The rate of the cluster reaction was found to be ~6-fold lower than that of E. coli FNR, suggesting that FnrP can remain transcriptionally active under microaerobic conditions. This is consistent with a role for FnrP in activating expression of the high O2 affinity cytochrome c oxidase under microaerobic conditions. Cluster conversion resulted in dissociation of the transcriptionally active FnrP dimer into monomers. Therefore, along with E. coli FNR, FnrP belongs to the subset of FNR proteins in which cluster type is correlated with association state. Interestingly, two key charged residues, Arg140 and Asp154, that have been shown to play key roles in the monomer-dimer equilibrium in E. coli FNR are not conserved in FnrP, indicating that different protomer interactions are important for this equilibrium. Finally, the FnrP [4Fe-4S] cluster is shown to undergo reaction with multiple NO molecules, resulting in iron nitrosyl species and dissociation into monomers

    The Role of Histone H4 Biotinylation in the Structure of Nucleosomes

    Get PDF
    Background: Post-translational modifications of histones play important roles in regulating nucleosome structure and gene transcription. It has been shown that biotinylation of histone H4 at lysine-12 in histone H4 (K12Bio-H4) is associated with repression of a number of genes. We hypothesized that biotinylation modifies the physical structure of nucleosomes, and that biotin-induced conformational changes contribute to gene silencing associated with histone biotinylation. Methodology/Principal Findings: To test this hypothesis we used atomic force microscopy to directly analyze structures of nucleosomes formed with biotin-modified and non-modified H4. The analysis of the AFM images revealed a 13% increase in the length of DNA wrapped around the histone core in nucleosomes with biotinylated H4. This statistically significant (p,0.001) difference between native and biotinylated nucleosomes corresponds to adding approximately 20 bp to the classical 147 bp length of nucleosomal DNA. Conclusions/Significance: The increase in nucleosomal DNA length is predicted to stabilize the association of DNA with histones and therefore to prevent nucleosomes from unwrapping. This provides a mechanistic explanation for the gene silencing associated with K12Bio-H4. The proposed single-molecule AFM approach will be instrumental for studying the effects of various epigenetic modifications of nucleosomes, in addition to biotinylation

    Влияние водного стресса на посевные качества семян и урожайность озимой пшеницы

    No full text
    The effect of water stress on quality and productivity of winter wheat seeds The article presents the study results of water stress effect on quality and productivity of winter wheat seeds. The moisture supply of plants affects the growth power and field germination of seeds. The decrease of the index has no significant effect on the laboratory germination, as it does not fully reflect the quality of the seeds. The varieties ‘Asket’, ‘Don 93’ and ‘Izyuminka’ showed the minimum decrease of 1000-kernels weight under the stress conditions on 24%, 25% and 27% respectively. The variety ‘Aksiniya’ showed the maximum decrease of this trait (40%). The variety ‘Asket’ has shown the increase of sprouts number (30% FG) in comparison with the standard variety (70% FG). The variety ‘Ermak’ has shown a slight decrease of field germination (on 2%) and the variety ‘Lilit’ has shown a large decrease of field germination (on 17%) in comparison with the standard variety. The conducted study determined that the varieties of winter soft wheat had a different reaction during germination in the conditions of artificial drought. The quality of seeds grown in dry conditions have lower indexes in comparison with the optimal growing conditions, excluding the variety ‘Asket’ that surpassed the indexes of growth power (on 2%) and field germination (on 1%) compared with the control variety

    Active bacterial modification of the host environment through RNA polymerase II inhibition

    No full text
    Unlike pathogens, which attack the host, commensal bacteria create a state of friendly coexistence. Here, we identified a mechanism of bacterial adaptation to the host niche, where they reside. Asymptomatic carrier strains were shown to inhibit RNA polymerase II (Pol II) in host cells by targeting Ser2 phosphorylation, a step required for productive mRNA elongation. Assisted by a rare, spontaneous loss-of-function mutant from a human carrier, the bacterial NlpD protein was identified as a Pol II inhibitor. After internalization by host cells, NlpD was shown to target constituents of the Pol II phosphorylation complex (RPB1 and PAF1C), attenuating host gene expression. Therapeutic efficacy of a recombinant NlpD protein was demonstrated in a urinary tract infection model, by reduced tissue pathology, accelerated bacterial clearance, and attenuated Pol II-dependent gene expression. The findings suggest an intriguing, evolutionarily conserved mechanism for bacterial modulation of host gene expression, with a remarkable therapeutic potential
    corecore