14,799 research outputs found

    Unified description of seagull cancellations and infrared finiteness of gluon propagators

    Get PDF
    We present a generalized theoretical framework for dealing with the important issue of dynamical mass generation in Yang-Mills theories, and, in particular, with the infrared finiteness of the gluon propagators, observed in a multitude of recent lattice simulations. Our analysis is manifestly gauge-invariant, in the sense that it preserves the transversality of the gluon self-energy, and gauge-independent, given that the conclusions do not depend on the choice of the gauge-fixing parameter within the linear covariant gauges. The central construction relies crucially on the subtle interplay between the Abelian Ward identities satisfied by the nonperturbative vertices and a special integral identity that enforces a vast number of 'seagull cancellations' among the one- and two-loop dressed diagrams of the gluon Schwinger-Dyson equation. The key result of these considerations is that the gluon propagator remains rigorously massless, provided that the vertices do not contain (dynamical) massless poles. When such poles are incorporated into the vertices, under the pivotal requirement of respecting the gauge symmetry of the theory, the terms comprising the Ward identities conspire in such a way as to still enforce the total annihilation of all quadratic divergences, inducing, at the same time, residual contributions that account for the saturation of gluon propagators in the deep infrared.Comment: 40 pages, 7 figures; v2: typos corrected, version matching the published on

    Evidence of ghost suppression in gluon mass dynamics

    Full text link
    In this work we study the impact that the ghost sector of pure Yang-Mills theories may have on the generation of a dynamical gauge boson mass, which hinges on the appearance of massless poles in the fundamental vertices of the theory, and the subsequent realization of the well-known Schwinger mechanism. The process responsible for the formation of such structures is itself dynamical in nature, and is governed by a set of Bethe-Salpeter type of integral equations. While in previous studies the presence of massless poles was assumed to be exclusively associated with the background-gauge three-gluon vertex, in the present analysis we allow them to appear also in the corresponding ghost-gluon vertex. The full analysis of the resulting Bethe-Salpeter system reveals that the contribution of the poles associated with the ghost-gluon vertex are particularly suppressed, their sole discernible effect being a slight modification in the running of the gluon mass, for momenta larger than a few GeV. In addition, we examine the behavior of the (background-gauge) ghost-gluon vertex in the limit of vanishing ghost momentum, and derive the corresponding version of Taylor's theorem. These considerations, together with a suitable Ansatz, permit us the full reconstruction of the pole sector of the two vertices involved.Comment: 30 pages, 10 figure

    Phenomenological Renormalization Group Methods

    Full text link
    Some renormalization group approaches have been proposed during the last few years which are close in spirit to the Nightingale phenomenological procedure. In essence, by exploiting the finite size scaling hypothesis, the approximate critical behavior of the model on infinite lattice is obtained through the exact computation of some thermal quantities of the model on finite clusters. In this work some of these methods are reviewed, namely the mean field renormalization group, the effective field renormalization group and the finite size scaling renormalization group procedures. Although special emphasis is given to the mean field renormalization group (since it has been, up to now, much more applied an extended to study a wide variety of different systems) a discussion of their potentialities and interrelations to other methods is also addressed.Comment: Review Articl

    Phenomenology of LFV at low-energies and at the LHC: strategies to probe the SUSY seesaw

    Full text link
    We study the impact of a type-I SUSY seesaw concerning lepton flavour violation (LFV) at low-energies and at the LHC. At the LHC, χ20→ℓ~ ℓ→ℓ ℓ χ10 \chi_2^0\to \tilde \ell \,\ell \to \ell \,\ell\,\chi_1^0 decays, in combination with other observables, render feasible the reconstruction of the masses of the intermediate sleptons, and hence the study of ℓi−ℓj\ell_i - \ell_j mass differences. If interpreted as being due to the violation of lepton flavour, high-energy observables, such as large slepton mass splittings and flavour violating neutralino and slepton decays, are expected to be accompanied by low-energy manifestations of LFV such as radiative and three-body lepton decays. We discuss how to devise strategies based in the interplay of slepton mass splittings as might be observed at the LHC and low-energy LFV observables to derive important information on the underlying mechanism of LFV.Comment: 6 pages, 4 figures. To appear in the proceedings of the 11th International Workshop on Tau Lepton Physics (TAU2010), Manchester, UK, 13-17 September 201

    Lepton flavour violation: physics potential of a Linear Collider

    Get PDF
    We revisit the potential of a Linear Collider concerning the study of lepton flavour violation, in view of new LHC bounds and of the (very) recent developments in lepton physics. Working in the framework of a type I supersymmetric seesaw, we evaluate the prospects of observing seesaw-induced lepton flavour violating final states of the type e \mu + missing energy, arising from e+ e- and e- e- collisions. In both cases we address the potential background from standard model and supersymmetric charged currents. We also explore the possibility of electron and positron beam polarisation. The statistical significance of the signal, even in the absence of kinematical and/or detector cuts, renders the observation of such flavour violating events feasible over large regions of the parameter space. We further consider the \mu-\mu- + E^T_miss final state in the e- e- beam option finding that, due to a very suppressed background, this process turns out to be a truly clear probe of a supersymmetric seesaw, assuming the latter to be the unique source of lepton flavour violation.Comment: 30 pages, 48 figure

    Potential of a Linear Collider for Lepton Flavour Violation studies in the SUSY seesaw

    Full text link
    We study the potential of an e+- e- Linear Collider for charged lepton flavour violation studies in a supersymmetric framework where neutrino masses and mixings are explained by a type-I seesaw. Focusing on e-mu flavour transitions, we evaluate the background from standard model and supersymmetric charged currents to the e mu + missing E_T signal. We study the energy dependence of both signal and background, and the effect of beam polarisation in increasing the signal over background significance. Finally, we consider the mu- mu- + missing E_T final state in e- e- collisions that, despite being signal suppressed by requiring two e-mu flavour transitions, is found to be a clear signature of charged lepton flavour violation due to a very reduced standard model background.Comment: 8 pages, 5 figures. To appear in the proceedings of "DISCRETE 2012 - 3rd Symposium on Prospects in the Physics of Discrete Symmetries", Lisbon, Portugal, 3-7 December 201
    • …
    corecore