1,606 research outputs found
Revisiting the correlation between stellar activity and planetary surface gravity
Aims: We re-evaluate the correlation between planetary surface gravity and
stellar host activity as measured by the index log(). This
correlation, previously identified by Hartman (2010), is now analyzed in light
of an extended measurements dataset, roughly 3 times larger than the original
one.
Methods: We calculated the Spearman's rank correlation coefficient between
the two quantities and its associated p-value. The correlation coefficient was
calculated for both the full dataset and the star-planet pairs that follow the
conditions proposed by Hartman (2010). In order to do so, we considered
effective temperatures both as collected from the literature and from the
SWEET-Cat catalog, which provides a more homogeneous and accurate effective
temperature determination.
Results: The analysis delivers significant correlation coefficients, but with
a lower value than those obtained by Hartman (2010). Yet, the two datasets are
compatible, and we show that a correlation coefficient as large as previously
published can arise naturally from a small-number statistics analysis of the
current dataset. The correlation is recovered for star-planet pairs selected
using the different conditions proposed by Hartman (2010). Remarkably, the
usage of SWEET-Cat temperatures leads to larger correlation coefficient values.
We highlight and discuss the role of the correlation betwen different
parameters such as effective temperature and activity index. Several additional
effects on top of those discussed previously were considered, but none fully
explains the detected correlation. In light of the complex issue discussed
here, we encourage the different follow-up teams to publish their activity
index values in the form of log() index so that a comparison across
stars and instruments can be pursued.Comment: 11 pages, 3 figures, accepted for publication in A&
Nonsequential Double Ionization with Polarization-gated Pulses
We investigate laser-induced nonsequential double ionization by a
polarization-gated laser pulse, constructed employing two counter-rotating
circularly polarized few cycle pulses with a time delay . We address the
problem within a classical framework, and mimic the behavior of the
quantum-mechanical electronic wave packet by means of an ensemble of classical
electron trajectories. These trajectories are initially weighted with the
quasi-static tunneling rate, and with suitably chosen distributions for the
momentum components parallel and perpendicular to the laser-field polarization,
in the temporal region for which it is nearly linearly polarized. We show that,
if the time delay is of the order of the pulse length, the
electron-momentum distributions, as functions of the parallel momentum
components, are highly asymmetric and dependent on the carrier-envelope (CE)
phase. As this delay is decreased, this asymmetry gradually vanishes. We
explain this behavior in terms of the available phase space, the quasi-static
tunneling rate and the recollision rate for the first electron, for different
sets of trajectories. Our results show that polarization-gating technique may
provide an efficient way to study the NSDI dynamics in the single-cycle limit,
without employing few-cycle pulses.Comment: 17 pages, 6 figure
Causality and quantum interference in time-delayed laser-induced nonsequential double ionization
We perform a detailed analysis of the importance of causality within the strong-field approximation and the steepest-descent framework for the recollision-excitation with subsequent tunneling ionization (RESI) pathway in laser-induced nonsequential double ionization (NSDI). In this time-delayed pathway, an electron returns to its parent ion and, by recolliding with the core, gives part of its kinetic energy to excite a second electron at a time t′. The second electron then reaches the continuum at a later time t by tunneling ionization. We show that, if t′ and t are complex, the condition that recollision of the first electron occurs before tunnel ionization of the second electron translates into boundary conditions for the steepest-descent contours and thus puts constraints on the saddles to be taken when computing the RESI transition amplitudes. We also show that this generalized causality condition has a dramatic effect on the shapes of the RESI electron momentum distributions for few-cycle laser pulses. Physically, causality determines how the dominant sets of orbits of an electron returning to its parent ion can be combined with the dominant orbits of a second electron tunneling from an excited state. All features encountered are analyzed in terms of such orbits and their quantum interference
Classical and quantum-mechanical treatments of nonsequential double ionization with few-cycle laser pulses
We address nonsequential double ionization induced by strong, linearly
polarized laser fields of only a few cycles, considering a physical mechanism
in which the second electron is dislodged by the inelastic collision of the
first electron with its parent ion. The problem is treated classically, using
an ensemble model, and quantum-mechanically, within the strong-field and
uniform saddle-point approximations. In the latter case, the results are
interpreted in terms of "quantum orbits", which can be related to the
trajectories of a classical electron in an electric field. We obtain highly
asymmetric electron momentum distributions, which strongly depend on the
absolute phase, i.e., on the phase difference between the pulse envelope and
its carrier frequency. Around a particular value of this parameter, the
distributions shift from the region of positive to that of negative momenta, or
vice-versa, in a radical fashion. This behavior is investigated in detail for
several driving-field parameters, and provides a very efficient method for
measuring the absolute phase. Both models yield very similar distributions,
which share the same physical explanation. There exist, however, minor
discrepancies due to the fact that, beyond the region for which electron-impact
ionization is classically allowed, the yields from the quantum mechanical
computation decay exponentially, whereas their classical counterparts vanish.Comment: 12 pages revtex, 12 figures (eps files
Interference effects in above-threshold ionization from diatomic molecules: determining the internuclear separation
We calculate angle-resolved above-threshold ionization spectra for diatomic
molecules in linearly polarized laser fields, employing the strong-field
approximation. The interference structure resulting from the individual
contributions of the different scattering scenarios is discussed in detail,
with respect to the dependence on the internuclear distance and molecular
orientation. We show that, in general, the contributions from the processes in
which the electron is freed at one center and rescatters off the other obscure
the interference maxima and minima obtained from single-center processes.
However, around the boundary of the energy regions for which rescattering has a
classical counterpart, such processes play a negligible role and very clear
interference patterns are observed. In such energy regions, one is able to
infer the internuclear distance from the energy difference between adjacent
interference minima.Comment: 10 pages, 8 figures; discussions slightly modified and an additional
figure inserted for clarit
- …