1,865 research outputs found

    Influence of asymmetry and nodal planes on high-harmonic generation in heteronuclear molecules

    Full text link
    The relation between high-harmonic spectra and the geometry of the molecular orbitals in position and momentum space is investigated. In particular we choose two isoelectronic pairs of homonuclear and heteronuclear molecules, such that the highest occupied molecular orbital of the former exhibit at least one nodal plane. The imprint of such planes is a strong suppression in the harmonic spectra, for particular alignment angles. We are able to identify two distinct types of nodal planes. If the nodal planes are determined by the atomic wavefunctions only, the angle for which the yield is suppressed will remain the same for both types of molecules. In contrast, if they are determined by the linear combination of atomic orbitals at different centers in the molecule, there will be a shift in the angle at which the suppression occurs for the heteronuclear molecules, with regard to their homonuclear counterpart. This shows that, in principle, molecular imaging, which uses the homonuclear molecule as a reference and enables one to observe the wavefunction distortions in its heteronuclear counterpart, is possible.Comment: 14 pages, 7 figures. Figs. 3, 5 and 6 have been simplified in order to comply with the arXiv size requirement

    Excitation, two-center interference and the orbital geometry in laser-induced nonsequential double ionization of diatomic molecules

    Full text link
    We address the influence of the molecular orbital geometry and of the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules for different molecular species, namely N2\mathrm{N}_2 and Li2\mathrm{Li}_2. We focus on the recollision excitation with subsequent tunneling ionization (RESI) mechanism, in which the first electron, upon return, promotes the second electron to an excited state, from where it subsequently tunnels. We show that the electron-momentum distributions exhibit interference maxima and minima due to the electron emission at spatially separated centers. We provide generalized analytical expressions for such maxima or minima, which take into account ss pp mixing and the orbital geometry. The patterns caused by the two-center interference are sharpest for vanishing alignment angle and get washed out as this parameter increases. Apart from that, there exist features due to the geometry of the lowest occupied molecular orbital (LUMO), which may be observed for a wide range of alignment angles. Such features manifest themselves as the suppression of probability density in specific momentum regions due to the shape of the LUMO wavefunction, or as an overall decrease in the RESI yield due to the presence of nodal planes.Comment: 11 pages revtex, 2 figure

    Local dynamics in high-order harmonic generation using Bohmian trajectories

    Full text link
    We investigate high-order harmonic generation from a Bohmian-mechanical perspective, and find that the innermost part of the core, represented by a single Bohmian trajectory, leads to the main contributions to the high-harmonic spectra. Using time-frequency analysis, we associate this central Bohmian trajectory to an ensemble of unbound classical trajectories leaving and returning to the core, in agreement with the three step model. In the Bohmian scenario, this physical picture builds up non-locally near the core via the quantum mechanical phase of the wavefunction. This implies that the flow of the wavefunction far from the core alters the central Bohmian trajectory. We also show how this phase degrades in time for the peripheral Bohmian trajectories as they leave the core region.Comment: 7 pages, 3 figures; the manuscript has been considerably extended and modified with regard to the previous version

    High-harmonic generation from a confined atom

    Full text link
    The order of high harmonics emitted by an atom in an intense laser field is limited by the so-called cutoff frequency. Solving the time-dependent Schr\"odinger equation, we show that this frequency can be increased considerably by a parabolic confining potential, if the confinement parameters are suitably chosen. Furthermore, due to confinement, the radiation intensity remains high throughout the extended emission range. All features observed can be explained with classical arguments.Comment: 4 pages(tex files), 4 figures(eps files); added references and comment

    Nonsequential Double Ionization with Polarization-gated Pulses

    Full text link
    We investigate laser-induced nonsequential double ionization by a polarization-gated laser pulse, constructed employing two counter-rotating circularly polarized few cycle pulses with a time delay TdT_{d}. We address the problem within a classical framework, and mimic the behavior of the quantum-mechanical electronic wave packet by means of an ensemble of classical electron trajectories. These trajectories are initially weighted with the quasi-static tunneling rate, and with suitably chosen distributions for the momentum components parallel and perpendicular to the laser-field polarization, in the temporal region for which it is nearly linearly polarized. We show that, if the time delay TdT_{d} is of the order of the pulse length, the electron-momentum distributions, as functions of the parallel momentum components, are highly asymmetric and dependent on the carrier-envelope (CE) phase. As this delay is decreased, this asymmetry gradually vanishes. We explain this behavior in terms of the available phase space, the quasi-static tunneling rate and the recollision rate for the first electron, for different sets of trajectories. Our results show that polarization-gating technique may provide an efficient way to study the NSDI dynamics in the single-cycle limit, without employing few-cycle pulses.Comment: 17 pages, 6 figure

    A framework for the selection of the right nuclear power plant

    Get PDF
    Civil nuclear reactors are used for the production of electrical energy. In the nuclear industry vendors propose several nuclear reactor designs with a size from 35–45 MWe up to 1600–1700 MWe. The choice of the right design is a multidimensional problem since a utility has to include not only financial factors as levelised cost of electricity (LCOE) and internal rate of return (IRR), but also the so called “external factors” like the required spinning reserve, the impact on local industry and the social acceptability. Therefore it is necessary to balance advantages and disadvantages of each design during the entire life cycle of the plant, usually 40–60 years. In the scientific literature there are several techniques for solving this multidimensional problem. Unfortunately it does not seem possible to apply these methodologies as they are, since the problem is too complex and it is difficult to provide consistent and trustworthy expert judgments. This paper fills the gap, proposing a two-step framework to choosing the best nuclear reactor at the pre-feasibility study phase. The paper shows in detail how to use the methodology, comparing the choice of a small-medium reactor (SMR) with a large reactor (LR), characterised, according to the International Atomic Energy Agency (2006), by an electrical output respectively lower and higher than 700 MWe
    • …
    corecore