536 research outputs found

    HPLC-DAD and HPLC-ESI-Q-ToF characterisation of early 20th century lake and organic pigments from Lefranc archives

    Get PDF
    The characterisation of atelier materials and of the historical commercial formulation of paint materials has recently gained new interest in the field of conservation science applied to modern and contemporary art, since modern paint materials are subjected to peculiar and often unpredictable degradation and fading processes. Assessing the composition of the original materials purchased by artists can guide not only their identification in works of art, but also their restoration and conservation. Advances in characterisation methods and models for data interpretation are particularly important in studying organic coloring materials in the transition period corresponding to the late 19th-early 20th century, when many such variants or combinations were hypothetically possible in their formulations. There is thus a need for reliable databases of materials introduced in that period and for gaining chemical knowledge at a molecular level related to modern organic pigments, by state-of-the-art protocols. This paper reports on the results of a study on 44 samples of historical colorants in powder and paint tubes, containing both lake pigments and synthetic organic pigments dating from 1890 to 1926. The samples were collected at the Lefranc Archive in Le Mans (France) as a part of Project Futurahma "From Futurism to Classicism (1910-1922). Research, Art History and Material Analysis", (FIRB2012, Italian Ministry of University and Research), and were investigated using an analytical approach based on chromatographic and mass spectrometric techniques. The focus of the chemical analyses was to reveal the composition of the historical organic lake pigments including minor components, to discriminate between different recipes for the extraction of chromophore-containing molecules from the raw materials, and ultimately to distinguish between different formulations and recipes. High performance liquid chromatography (HPLC) with diode array detector (DAD) or electrospray-Quadrupole-Time of Flight tandem mass spectrometry detector (ESI-Q-ToF) were chosen given their considerable capacity to identify such complex and widespread organic materials. Although the inorganic components of the pigments were not taken into account in this survey, the specific molecular profiles provided invaluable information on the extraction procedures or synthetic strategy followed by the different producers, at different times. For instance, the use of Kopp's purpurin and garancine was highlighted, and synthetic by-products were identified. The results provided evidence that the addition of synthetic organic pigments to paint mixtures started from 1910 onwards, but they also suggest that in the formulation of high quality (surfin) colorants, natural products were still preferred. Moreover, in one of the samples the use of murexide as the colouring material was confirmed. This paper presents the first systematic and comprehensive survey on organic lakes and pigments belonging to an historical archive, by both HPLC-DAD and HPLC-ESI-Q-ToF. Specific by-products of synthetic production of pigments, which can act as specific molecular markers for dating or locating a work of art, were also identified for the first time

    Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

    Get PDF

    Substituent Effect on the Photoreduction Kinetics of Benzophenone

    Get PDF
    The kinetics of the photoreduction of four benzophenone derivatives by isopropyl alcohol was examined in acetonitrile, namely tetra-meta-trifluoromethyl-, di-para-trifluoromethyl-, di-para-methoxy benzophenone and for comparison the unsubstituted molecule itself. The basic spectroscopic (absorption and phosphorescence spectra) and photophysical (quantum yields, excited state energies) properties were established, and the key kinetic parameters were determined by the laser flash photolysis transient absorption technique. The rate coefficients of both the primary and secondary photoreduction reaction show remarkable dependence on ring substitution. This substantial effect is caused by the considerable change in the activation energy of the corresponding process. The experimental results as well as DFT quantum chemical calculations clearly indicate that these benzophenone derivatives all react as n-p* excited ketones, and the rate as well as the activation energy of the reduction steps change parallel with the reaction enthalpies, the determining factor being the stability of the forming aromatic ketyl radicals. The secondary photoreduction of benzophenones by the aliphatic ketyl radical formed in the primary step occurs via a hydrogen bonded complex. The binding energy of the hydrogen bonded complex between the aliphatic ketyl radical reactant and a solvent molecule is a critical parameter influencing the observable rate of the secondary photoreduction
    • …
    corecore