32 research outputs found

    Effect of preemptive flunixin meglumine and lidocaine on behavioral and physiological indicators of pain post-band and knife castration in 6-mo-old beef calves

    Get PDF
    One hundred and seventy-four Angus bull calves (248 ± 27.1 kg of body weight (BW), 6-mo-old) were used in a 71 d study to assess the efficacy of the combination of flunixin meglumine and lidocaine in mitigating pain associated with band and knife castration. The experiment consisted of a 3 × 2 factorial design that included castration method -sham (C), band (B) or knife (K); and medication – lidocaine (scrotal ring block 30 mL, 2% HCl lidocaine) and flunixin meglumine (single s.c. dose of 2.2 mg/kg BW) (M), or saline solution (NM). Animals were weighed on d 0 and weekly until d 71 (final BW) post-castration to obtain ADG. Physiological indicators included salivary cortisol collected on d 0 (30, 60, 120 and 240 min), d 2, 8, and weekly until d 48 post-castration; scrotal and eye temperature assessed on d 1, 2, 6, 8, and weekly until d 36 post-castration; fecal samples for E. coli collected on d 0, 2, 6, 8, and 22 post-castration. Behavioral measures included stride length on d 0, 8, and weekly until d 36, visual analog scale (VAS) evaluated during castration, and feeding behavior collected daily from d 0 to d 71 post-castration. Final BW and ADG were greater (P  0.10) were observed for stride length. The VAS scores were greater (P = 0.01) in K than C and B calves, while NM had greater scores (P < 0.01) than M calves. Dry matter intake and meal size were greater (P = 0.05) in M than NM calves. Meal duration was greater (P = 0.01) in B and C than K calves on d 0, while K calves had greater (P < 0.01) meal duration than C calves 1 and 2-wk post-castration. Overall, the combination of flunixin meglumine and lidocaine reduced physiological and behavioral indicators of pain, suggesting that their combined use was effective at mitigating pain associated with band and knife castration.info:eu-repo/semantics/acceptedVersio

    Cost-Effectiveness of Gene-Specific Prevention Strategies for Ovarian and Breast Cancer.

    Get PDF
    IMPORTANCE: Pathogenic variants (PVs) in BRCA1, BRCA2, PALB2, RAD51C, RAD51D, and BRIP1 cancer susceptibility genes (CSGs) confer an increased ovarian cancer (OC) risk, with BRCA1, BRCA2, PALB2, RAD51C, and RAD51D PVs also conferring an elevated breast cancer (BC) risk. Risk-reducing surgery, medical prevention, and BC surveillance offer the opportunity to prevent cancers and deaths, but their cost-effectiveness for individual CSGs remains poorly addressed. OBJECTIVE: To estimate the cost-effectiveness of prevention strategies for OC and BC among individuals carrying PVs in the previously listed CSGs. DESIGN, SETTING, AND PARTICIPANTS: In this economic evaluation, a decision-analytic Markov model evaluated the cost-effectiveness of risk-reducing salpingo-oophorectomy (RRSO) and, where relevant, risk-reducing mastectomy (RRM) compared with nonsurgical interventions (including BC surveillance and medical prevention for increased BC risk) from December 1, 2022, to August 31, 2023. The analysis took a UK payer perspective with a lifetime horizon. The simulated cohort consisted of women aged 30 years who carried BRCA1, BRCA2, PALB2, RAD51C, RAD51D, or BRIP1 PVs. Appropriate sensitivity and scenario analyses were performed. EXPOSURES: CSG-specific interventions, including RRSO at age 35 to 50 years with or without BC surveillance and medical prevention (ie, tamoxifen or anastrozole) from age 30 or 40 years, RRM at age 30 to 40 years, both RRSO and RRM, BC surveillance and medical prevention, or no intervention. MAIN OUTCOMES AND MEASURES: The incremental cost-effectiveness ratio (ICER) was calculated as incremental cost per quality-adjusted life-year (QALY) gained. OC and BC cases and deaths were estimated. RESULTS: In the simulated cohort of women aged 30 years with no cancer, undergoing both RRSO and RRM was most cost-effective for individuals carrying BRCA1 (RRM at age 30 years; RRSO at age 35 years), BRCA2 (RRM at age 35 years; RRSO at age 40 years), and PALB2 (RRM at age 40 years; RRSO at age 45 years) PVs. The corresponding ICERs were -£1942/QALY (-2680/QALY),−£89/QALY(−2680/QALY), -£89/QALY (-123/QALY), and £2381/QALY (3286/QALY),respectively.RRSOatage45yearswascost−effectiveforRAD51C,RAD51D,andBRIP1PVcarrierscomparedwithnonsurgicalstrategies.ThecorrespondingICERswere£962/QALY(3286/QALY), respectively. RRSO at age 45 years was cost-effective for RAD51C, RAD51D, and BRIP1 PV carriers compared with nonsurgical strategies. The corresponding ICERs were £962/QALY (1328/QALY), £771/QALY (1064/QALY),and£2355/QALY(1064/QALY), and £2355/QALY (3250/QALY), respectively. The most cost-effective preventive strategy per 1000 PV carriers could prevent 923 OC and BC cases and 302 deaths among those carrying BRCA1; 686 OC and BC cases and 170 deaths for BRCA2; 464 OC and BC cases and 130 deaths for PALB2; 102 OC cases and 64 deaths for RAD51C; 118 OC cases and 76 deaths for RAD51D; and 55 OC cases and 37 deaths for BRIP1. Probabilistic sensitivity analysis indicated both RRSO and RRM were most cost-effective in 96.5%, 89.2%, and 84.8% of simulations for BRCA1, BRCA2, and PALB2 PVs, respectively, while RRSO was cost-effective in approximately 100% of simulations for RAD51C, RAD51D, and BRIP1 PVs. CONCLUSIONS AND RELEVANCE: In this cost-effectiveness study, RRSO with or without RRM at varying optimal ages was cost-effective compared with nonsurgical strategies for individuals who carried BRCA1, BRCA2, PALB2, RAD51C, RAD51D, or BRIP1 PVs. These findings support personalizing risk-reducing surgery and guideline recommendations for individual CSG-specific OC and BC risk management

    A functionally impaired missense variant identified in French Canadian families implicates FANCI as a candidate ovarian cancer-predisposing gene.

    Get PDF
    BACKGROUND: Familial ovarian cancer (OC) cases not harbouring pathogenic variants in either of the BRCA1 and BRCA2 OC-predisposing genes, which function in homologous recombination (HR) of DNA, could involve pathogenic variants in other DNA repair pathway genes. METHODS: Whole exome sequencing was used to identify rare variants in HR genes in a BRCA1 and BRCA2 pathogenic variant negative OC family of French Canadian (FC) ancestry, a population exhibiting genetic drift. OC cases and cancer-free individuals from FC and non-FC populations were investigated for carrier frequency of FANCI c.1813C>T; p.L605F, the top-ranking candidate. Gene and protein expression were investigated in cancer cell lines and tissue microarrays, respectively. RESULTS: In FC subjects, c.1813C>T was more common in familial (7.1%, 3/42) than sporadic (1.6%, 7/439) OC cases (P = 0.048). Carriers were detected in 2.5% (74/2950) of cancer-free females though female/male carriers were more likely to have a first-degree relative with OC (121/5249, 2.3%; Spearman correlation = 0.037; P = 0.011), suggesting a role in risk. Many of the cancer-free females had host factors known to reduce risk to OC which could influence cancer risk in this population. There was an increased carrier frequency of FANCI c.1813C>T in BRCA1 and BRCA2 pathogenic variant negative OC families, when including the discovery family, compared to cancer-free females (3/23, 13%; OR = 5.8; 95%CI = 1.7-19; P = 0.005). In non-FC subjects, 10 candidate FANCI variants were identified in 4.1% (21/516) of Australian OC cases negative for pathogenic variants in BRCA1 and BRCA2, including 10 carriers of FANCI c.1813C>T. Candidate variants were significantly more common in familial OC than in sporadic OC (P = 0.04). Localization of FANCD2, part of the FANCI-FANCD2 (ID2) binding complex in the Fanconi anaemia (FA) pathway, to sites of induced DNA damage was severely impeded in cells expressing the p.L605F isoform. This isoform was expressed at a reduced level, destabilized by DNA damaging agent treatment in both HeLa and OC cell lines, and exhibited sensitivity to cisplatin but not to a poly (ADP-ribose) polymerase inhibitor. By tissue microarray analyses, FANCI protein was consistently expressed in fallopian tube epithelial cells and only expressed at low-to-moderate levels in 88% (83/94) of OC samples. CONCLUSIONS: This is the first study to describe candidate OC variants in FANCI, a member of the ID2 complex of the FA DNA repair pathway. Our data suggest that pathogenic FANCI variants may modify OC risk in cancer families

    Literature Review of BARD1 as a Cancer Predisposing Gene with a Focus on Breast and Ovarian Cancers

    No full text
    Soon after the discovery of BRCA1 and BRCA2 over 20 years ago, it became apparent that not all hereditary breast and/or ovarian cancer syndrome families were explained by germline variants in these cancer predisposing genes, suggesting that other such genes have yet to be discovered. BRCA1-associated ring domain (BARD1), a direct interacting partner of BRCA1, was one of the earliest candidates investigated. Sequencing analyses revealed that potentially pathogenic BARD1 variants likely conferred a low&ndash;moderate risk to hereditary breast cancer, but this association is inconsistent. Here, we review studies of BARD1 as a cancer predisposing gene and illustrate the challenge of discovering additional cancer risk genes for hereditary breast and/or ovarian cancer. We selected peer reviewed research articles that focused on three themes: (i) sequence analyses of BARD1 to identify potentially pathogenic germline variants in adult hereditary cancer syndromes; (ii) biological assays of BARD1 variants to assess their effect on protein function; and (iii) association studies of BARD1 variants in family-based and case-control study groups to assess cancer risk. In conclusion, BARD1 is likely to be a low&ndash;moderate penetrance breast cancer risk gene

    Case Review: Whole-Exome Sequencing Analyses Identify Carriers of a Known Likely Pathogenic Intronic BRCA1 Variant in Ovarian Cancer Cases Clinically Negative for Pathogenic BRCA1 and BRCA2 Variants

    No full text
    Background: Detecting pathogenic intronic variants resulting in aberrant splicing remains a challenge in routine genetic testing. We describe germline whole-exome sequencing (WES) analyses and apply in silico predictive tools of familial ovarian cancer (OC) cases reported clinically negative for pathogenic BRCA1 and BRCA2 variants. Methods: WES data from 27 familial OC cases reported clinically negative for pathogenic BRCA1 and BRCA2 variants and 53 sporadic early-onset OC cases were analyzed for pathogenic variants in BRCA1 or BRCA2. WES data from carriers of pathogenic BRCA1 or BRCA2 variants were analyzed for pathogenic variants in 10 other OC predisposing genes. Loss of heterozygosity analysis was performed on tumor DNA from variant carriers. Results: BRCA1 c.5407-25T>A intronic variant, identified in two affected sisters and one sporadic OC case, is predicted to create a new splice effecting transcription of BRCA1. WES data from BRCA1 c.5407-25T>A carriers showed no evidence of pathogenic variants in other OC predisposing genes. Sequencing the tumor DNA from the variant carrier showed complete loss of the wild-type allele. Conclusions: The findings support BRCA1 c.5407-25T>A as a likely pathogenic variant and highlight the importance of investigating intronic sequences as causal variants in OC families where the involvement of BRCA1 is highly suggestive

    Case Review: Whole-Exome Sequencing Analyses Identify Carriers of a Known Likely Pathogenic Intronic BRCA1 Variant in Ovarian Cancer Cases Clinically Negative for Pathogenic BRCA1 and BRCA2 Variants

    No full text
    Background: Detecting pathogenic intronic variants resulting in aberrant splicing remains a challenge in routine genetic testing. We describe germline whole-exome sequencing (WES) analyses and apply in silico predictive tools of familial ovarian cancer (OC) cases reported clinically negative for pathogenic BRCA1 and BRCA2 variants. Methods: WES data from 27 familial OC cases reported clinically negative for pathogenic BRCA1 and BRCA2 variants and 53 sporadic early-onset OC cases were analyzed for pathogenic variants in BRCA1 or BRCA2. WES data from carriers of pathogenic BRCA1 or BRCA2 variants were analyzed for pathogenic variants in 10 other OC predisposing genes. Loss of heterozygosity analysis was performed on tumor DNA from variant carriers. Results: BRCA1 c.5407-25T&gt;A intronic variant, identified in two affected sisters and one sporadic OC case, is predicted to create a new splice effecting transcription of BRCA1. WES data from BRCA1 c.5407-25T&gt;A carriers showed no evidence of pathogenic variants in other OC predisposing genes. Sequencing the tumor DNA from the variant carrier showed complete loss of the wild-type allele. Conclusions: The findings support BRCA1 c.5407-25T&gt;A as a likely pathogenic variant and highlight the importance of investigating intronic sequences as causal variants in OC families where the involvement of BRCA1 is highly suggestive

    Case Review: Whole-Exome Sequencing Analyses Identify Carriers of a Known Likely Pathogenic Intronic <i>BRCA1</i> Variant in Ovarian Cancer Cases Clinically Negative for Pathogenic <i>BRCA1</i> and <i>BRCA2</i> Variants

    No full text
    Background: Detecting pathogenic intronic variants resulting in aberrant splicing remains a challenge in routine genetic testing. We describe germline whole-exome sequencing (WES) analyses and apply in silico predictive tools of familial ovarian cancer (OC) cases reported clinically negative for pathogenic BRCA1 and BRCA2 variants. Methods: WES data from 27 familial OC cases reported clinically negative for pathogenic BRCA1 and BRCA2 variants and 53 sporadic early-onset OC cases were analyzed for pathogenic variants in BRCA1 or BRCA2. WES data from carriers of pathogenic BRCA1 or BRCA2 variants were analyzed for pathogenic variants in 10 other OC predisposing genes. Loss of heterozygosity analysis was performed on tumor DNA from variant carriers. Results: BRCA1 c.5407-25T>A intronic variant, identified in two affected sisters and one sporadic OC case, is predicted to create a new splice effecting transcription of BRCA1. WES data from BRCA1 c.5407-25T>A carriers showed no evidence of pathogenic variants in other OC predisposing genes. Sequencing the tumor DNA from the variant carrier showed complete loss of the wild-type allele. Conclusions: The findings support BRCA1 c.5407-25T>A as a likely pathogenic variant and highlight the importance of investigating intronic sequences as causal variants in OC families where the involvement of BRCA1 is highly suggestive
    corecore