6,919 research outputs found

    Autoionization of very-high-n strontium Rydberg atoms

    Get PDF
    The autoionization of high n, n~280-430, strontium Rydberg states through excitation of the 5s 2S1/2→5p 2P1/2 transition in the core ion is investigated. The autoionization rates decrease rapidly as L is increased paving the way for production of long-lived two-electron-excited planetary atoms

    Synoptic Sky Surveys and the Diffuse Supernova Neutrino Background: Removing Astrophysical Uncertainties and Revealing Invisible Supernovae

    Full text link
    The cumulative (anti)neutrino production from all core-collapse supernovae within our cosmic horizon gives rise to the diffuse supernova neutrino background (DSNB), which is on the verge of detectability. The observed flux depends on supernova physics, but also on the cosmic history of supernova explosions; currently, the cosmic supernova rate introduces a substantial (+/-40%) uncertainty, largely through its absolute normalization. However, a new class of wide-field, repeated-scan (synoptic) optical sky surveys is coming online, and will map the sky in the time domain with unprecedented depth, completeness, and dynamic range. We show that these surveys will obtain the cosmic supernova rate by direct counting, in an unbiased way and with high statistics, and thus will allow for precise predictions of the DSNB. Upcoming sky surveys will substantially reduce the uncertainties in the DSNB source history to an anticipated +/-5% that is dominated by systematics, so that the observed high-energy flux thus will test supernova neutrino physics. The portion of the universe (z < 1) accessible to upcoming sky surveys includes the progenitors of a large fraction (~ 87%) of the expected 10-26 MeV DSNB event rate. We show that precision determination of the (optically detected) cosmic supernova history will also make the DSNB into a strong probe of an extra flux of neutrinos from optically invisible supernovae, which may be unseen either due to unexpected large dust obscuration in host galaxies, or because some core-collapse events proceed directly to black hole formation and fail to give an optical outburst.Comment: 11 pages, 6 figure

    Modelling of population dynamics of insects in any ecosystem with several distributions of insect development: A Review: Presentation

    Get PDF
    Predicting the occurrence of insects with a high accuracy requires the estimation of insect development time and the variation among individuals for each life stage and species under different environmental conditions such as fluctuating temperature, variation of relative humidity, different body sizes and stages of the insects, levels of crowding, and food supply. This review summarized the modeling methods of population dynamics of insects with several distributions of insect development, assumption and prediction accuracy of these developed models, and disadvantages and advantages of these modelling methods. These modeling methods include degree day model, nonlinear model, and distribution delay models. The structure of most common models are cohort, Leslie matrix, simulation, and individual based. The relationships among the modeling assumptions, effects of temperature, and other environmental factors, and structures of the developed models were examined. A new modelling approach such as physiological-biological time scale and chaos theory was suggested.Predicting the occurrence of insects with a high accuracy requires the estimation of insect development time and the variation among individuals for each life stage and species under different environmental conditions such as fluctuating temperature, variation of relative humidity, different body sizes and stages of the insects, levels of crowding, and food supply. This review summarized the modeling methods of population dynamics of insects with several distributions of insect development, assumption and prediction accuracy of these developed models, and disadvantages and advantages of these modelling methods. These modeling methods include degree day model, nonlinear model, and distribution delay models. The structure of most common models are cohort, Leslie matrix, simulation, and individual based. The relationships among the modeling assumptions, effects of temperature, and other environmental factors, and structures of the developed models were examined. A new modelling approach such as physiological-biological time scale and chaos theory was suggested

    Development and comparison of two models to predict survival rates of young larvae of Stegobium paniceum (L.) (Coleoptera: Anobiidae) under heat treated temperatures

    Get PDF
    Predicting mortality or survival rate of insects at heat treatment temperatures is critical for commercial heat treatment of food and storage facilities. Two models were developed to predict the survival rate of young larvae of drugstore beetle, Stegobium paniceum (L.) (Coleoptera: Anobiidae) under steady state or transient temperature condition: modified fundamental kinetic model and modified complementary log-log transformation model. Published young larvae mortalities and raw data of the temperature history, determined at different heat treatment temperatures, were used to develop these models. The models were verified and compared by using the field data collected in a medium sized mill. Both of the developed models overestimated the insect mortality in the mill when temperature was &gt; 53°C and underestimated insect mortality when temperature was &lt; 50°C. The lowest mean of the absolute difference between the predicted and measured insect mortality in the mill was 16.7±1.1% which was generated by using the modified complementary log-log transformation model. The possible reason of this divergence from the model is discussed.Keywords: Stegobium paniceum (L.), Survival, Heat treatments, Modeling

    A Simple Model for r-Process Scatter and Halo Evolution

    Full text link
    Recent observations of heavy elements produced by rapid neutron capture (r-process) in the halo have shown a striking and unexpected behavior: within a single star, the relative abundances of r-process elements heavier than Eu are the same as the same as those of solar system matter, while across stars with similar metallicity Fe/H, the r/Fe ratio varies over two orders of magnitude. In this paper we present a simple analytic model which describes a star's abundances in terms of its ``ancestry,'' i.e., the number of nucleosynthesis events (e.g., supernova explosions) which contributed to the star's composition. This model leads to a very simple analytic expression for the abundance scatter versus Fe/H, which is in good agreement with the data and with more sophisticated numerical models. We investigate two classes of scenarios for r-process nucleosynthesis, one in which r-process synthesis events occur in only \sim 4% of supernovae but iron synthesis is ubiquitous, and one in which iron nucleosynthesis occurs in only about 9% of supernovae. (the Wasserburg- Qian model). We find that the predictions in these scenarios are similar for [Fe/H] \ga -2.5, but that these models can be readily distinguished observationally by measuring the dispersion in r/Fe at [Fe/H] \la -3.Comment: AASTeX, 21 pages, includes 4 figure

    A low upper-limit on the lithium isotope ratio in HD140283

    Get PDF
    We have obtained a high-S/N (900-1100), high-resolving-power (R=95000) spectrum of the metal-poor subgiant HD 140283 in an effort to measure its 6Li/7Li isotope ratio. From a 1-D atmospheric analysis, we find a value consistent with zero, 6Li/7Li = 0.001, with an upper limit of 6Li/7Li < 0.026. This measurement supersedes an earlier detection (0.040 +/- 0.015(1sigma)) by one of the authors. HD 140283 provides no support for the suggestion that Population II stars may preserve their 6Li on the portion of the subgiant branch where 7Li is preserved. However, this star does not defeat the suggestion either; being at the cool end of subgiant branch of the Spite plateau, it may be sufficiently cool that 6Li depletion has already set in, or the star may be sufficiently metal poor that little Galactic production of 6Li had occurred. Continued investigation of other subgiants is necessary to test the idea. We also consider the implications of the HD 140283 upper limit in conjunction with other measurements for models of 6Li production by cosmic rays from supernovae and structure formation shocks.Comment: 8 pages, 4 figures; accepted for publication in Astronomy and Astrophysic

    Double Distribution of Dark Matter Halos with respect to Mass and Local Overdensity

    Full text link
    We present a double distribution function of dark matter halos, with respect to both object mass and local over- (or under-) density. This analytical tool provides a statistical treatment of the properties of matter surrounding collapsed objects, and can be used to study environmental effects on hierarchical structure formation. The size of the "local environment" of a collapsed object is defined to depend on the mass of the object. The Press-Schechter mass function is recovered by integration of our double distribution over the density contrast. We also present a detailed treatment of the evolution of overdensities and underdensities in Einstein-deSitter and flat LCDM universes, according to the spherical evolution model. We explicitly distinguish between true and linearly extrapolated overdensities and provide conversion relations between the two quantities.Comment: 25 pages, 10 figures, comments welcom

    Testing the Relation Between the Local and Cosmic Star Formation Histories

    Get PDF
    Recently, there has been great progress toward observationally determining the mean star formation history of the universe. When accurately known, the cosmic star formation rate could provide much information about Galactic evolution, if the Milky Way's star formation rate is representative of the average cosmic star formation history. A simple hypothesis is that our local star formation rate is proportional to the cosmic mean. In addition, to specify a star formation history, one must also adopt an initial mass function (IMF); typically it is assumed that the IMF is a smooth function which is constant in time. We show how to test directly the compatibility of all these assumptions, by making use of the local (solar neighborhood) star formation record encoded in the present-day stellar mass function. Present data suggests that at least one of the following is false: (1) the local IMF is constant in time; (2) the local IMF is a smooth (unimodal) function; and/or (3) star formation in the Galactic disk was representative of the cosmic mean. We briefly discuss how to determine which of these assumptions fail, and improvements in observations which will sharpen this test.Comment: 14 pages in LaTeX (uses aaspp4.sty). 5 postscript figures. To appear in the Astrophysical Journa

    Solar Neutrino Constraints on the BBN Production of Li

    Full text link
    Using the recent WMAP determination of the baryon-to-photon ratio, 10^{10} \eta = 6.14 to within a few percent, big bang nucleosynthesis (BBN) calculations can make relatively accurate predictions of the abundances of the light element isotopes which can be tested against observational abundance determinations. At this value of \eta, the Li7 abundance is predicted to be significantly higher than that observed in low metallicity halo dwarf stars. Among the possible resolutions to this discrepancy are 1) Li7 depletion in the atmosphere of stars; 2) systematic errors originating from the choice of stellar parameters - most notably the surface temperature; and 3) systematic errors in the nuclear cross sections used in the nucleosynthesis calculations. Here, we explore the last possibility, and focus on possible systematic errors in the He3(\alpha,\gamma)Be7 reaction, which is the only important Li7 production channel in BBN. The absolute value of the cross section for this key reaction is known relatively poorly both experimentally and theoretically. The agreement between the standard solar model and solar neutrino data thus provides additional constraints on variations in the cross section (S_{34}). Using the standard solar model of Bahcall, and recent solar neutrino data, we can exclude systematic S_{34} variations of the magnitude needed to resolve the BBN Li7 problem at > 95% CL. Additional laboratory data on He3(\alpha,\gamma)Be7 will sharpen our understanding of both BBN and solar neutrinos, particularly if care is taken in determining the absolute cross section and its uncertainties. Nevertheless, it already seems that this ``nuclear fix'' to the Li7 BBN problem is unlikely; other possible solutions are briefly discussed.Comment: 21 pages, 3 ps figure
    corecore