4 research outputs found
Evaluation of a Brief Marriage Intervention for Internal Behavioral Health Consultants in Military Primary Care
Military couples face significant challenges to their relationships including demanding schedules, multiple deployments, and frequent moves. Despite the high costs of chronic marital distress, very few military (or civilian) couples seek marriage therapy. The military services and the VA system have implemented collaborative care models in primary care where internal behavioral health consultants are integrated into primary care. Integrated primary care can reduce the stigma of behavioral health services and may increase the odds that couples would seek help earlier. There are no established couple interventions designed for use in primary care. The purpose of this presentation is to describe a program of research focused on adapting and validating The Marriage Checkup (MC) for use in an integrated primary care clinic.https://corescholar.libraries.wright.edu/urop_celebration/1019/thumbnail.jp
Structure of a bacterial type III secretion system in contact with a host membrane in situ
Many bacterial pathogens of animals and plants use a conserved type III secretion system
(T3SS) to inject virulence effector proteins directly into eukaryotic cells to subvert host
functions. Contact with host membranes is critical for T3SS activation, yet little is known
about T3SS architecture in this state or the conformational changes that drive effector
translocation. Here we use cryo-electron tomography and sub-tomogram averaging to derive
the intact structure of the primordial Chlamydia trachomatis T3SS in the presence and absence
of host membrane contact. Comparison of the averaged structures demonstrates a marked
compaction of the basal body (4 nm) occurs when the needle tip contacts the host cell
membrane. This compaction is coupled to a stabilization of the cytosolic sorting platform–
ATPase. Our findings reveal the first structure of a bacterial T3SS from a major human
pathogen engaged with a eukaryotic host, and reveal striking ‘pump-action’ conformational
changes that underpin effector injection
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure