18,884 research outputs found

    ARE CROP YIELDS NORMALLY DISTRIBUTED?

    Get PDF
    This paper revisits the issue of crop yield distributions using improved model specifications, estimation and testing procedures that address the methodological concerns raised in recent literature that could have invalidated previous conclusions of yield non-normality. It shows beyond reasonable doubt that some crop yield distributions are non-normal, kurtotic and right or left skewed, depending on the circumstances. A procedure to jointly estimate non-normal farm- and aggregate-level yield distributions with similar means but different variances is illustrated, and the consequences of incorrectly assuming yield normality are explored.Yield non-normality, probability distribution function models, Corn Belt yields, West Texas dryland cotton yields, Crop Production/Industries,

    QCD corrections to stoponium production at hadron colliders

    Full text link
    If the lighter top squark has no kinematically allowed two-body decays that conserve flavor, then it will live long enough to form hadronic bound states. The observation of the diphoton decays of stoponium could then provide a uniquely precise measurement of the top squark mass. In this paper, we calculate the cross section for the production of stoponium in a hadron collider at next-to-leading order (NLO) in QCD. We present numerical results for the cross section for production of stoponium at the LHC and study the dependence on beam energy, stoponium mass, and the renormalization and factorization scale. The cross-section is substantially increased by the NLO corrections, counteracting a corresponding decrease found earlier in the NLO diphoton branching ratio.Comment: 24 page

    A shallow water ferrous-hulled shipwreck reveals a distinct microbial community.

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).Shipwrecks act as artificial reefs and provide a solid surface in aquatic systems for many different forms of life to attach to, especially microbial communities, making them a hotspot of biogeochemical cycling. Depending on the microbial community and surrounding environment, they may either contribute to the wreck’s preservation or deterioration. Even within a single wreck, preservation and deterioration processes may vary, suggesting that the microbial community may also vary. This study aimed to identify the differences through widespread sampling of the microbial communities associated with the Pappy Lane shipwreck (NC shipwreck site #PAS0001), a shallow water ferrous-hulled shipwreck in Pamlico Sound, North Carolina to determine if there are differences across the wreck as well as from its surrounding environment. Loose shipwreck debris, drilled shipcores, surrounding sediment, and seawater samples were collected from the Pappy Lane shipwreck to characterize the microbial communities on and around the shipwreck. Results indicated that the shipwreck samples were more similar to each other than the surrounding sediment and aquatic environments suggesting they have made a specialized niche associated with the shipwreck. There were differences between the microbial community across the shipwreck, including between visibly corroded and non-corroded shipwreck debris pieces. Relative abundance estimates for neutrophilic iron-oxidizing bacteria (FeOB), an organism that may contribute to deterioration through biocorrosion, revealed they are present across the shipwreck and at highest abundance on the samples containing visible corrosion products. Zetaproteobacteria, a known class of marine iron-oxidizers, were also found in higher abundance on shipwreck samples with visible corrosion. A novel Zetaproteobacteria strain, Mariprofundus ferrooxydans O1, was isolated from one of the shipwreck pieces and its genome analyzed to elucidate the functional potential of the organism. In addition to iron oxidation pathways, the isolate has the genomic potential to perform carbon fixation in both high and low oxygen environments, as well as perform nitrogen fixation, contributing to the overall biogeochemical cycling of nutrients and metals in the shipwreck ecosystem. By understanding the microbial communities associated with shallow water ferrous-hulled shipwrecks, better management strategies and preservation plans can be put into place to preserve these artificial reefs and non-renewable cultural resources.ECU Open Access Publishing Support Fun

    Probing quark gluon plasma properties by heavy flavours

    Full text link
    The Fokker Planck (FP) equation has been solved to study the interaction of non-equilibrated heavy quarks with the Quark Gluon Plasma (QGP) expected to be formed in heavy ion collisions at RHIC energies. The solutions of the FP equation have been convoluted with the relevant fragmentation functions to obtain the DD and BB meson spectra. The results are compared with experimental data measured by STAR collaboration. It is found that the present experimental data can not distinguish between the pTp_T spectra obtained from the equilibrium and non-equilibrium charm distributions. Data at lower pTp_T may play a crucial role in making the distinction between the two. The nuclear suppression factor, RAAR_{\mathrm AA} for non-photonic single electron spectra resulting from the semileptonic decays of hadrons containing heavy flavours have been evaluated using the present formalism. It is observed that the experimental data on nuclear suppression factor of the non-photonic electrons can be reproduced within this formalism by enhancing the pQCD cross sections by a factor of 2 provided the expansion of the bulk matter is governed by the velocity of sound, cs1/4c_s\sim 1/\sqrt{4}. Ideal gas equation of state fails to reproduce the data even with the enhancement of the pQCD cross sections by a factor of 2.Comment: Minor modification of tex

    Lung cancer: a potential role for dentists

    Get PDF

    Dynamical structure of the inner 100 AU of the deeply embedded protostar IRAS 16293-2422

    Full text link
    A fundamental question about the early evolution of low-mass protostars is when circumstellar disks may form. High angular resolution observations of molecular transitions in the (sub)millimeter wavelength windows make it possible to investigate the kinematics of the gas around newly-formed stars, for example to identify the presence of rotation and infall. IRAS 16293-2422 was observed with the extended Submillimeter Array (eSMA) resulting in subarcsecond resolution (0.46" x 0.29", i.e. \sim 55 ×\times 35~AU) images of compact emission from the C17^{17}O (3-2) and C34^{34}S (7-6) transitions at 337~GHz (0.89~mm). To recover the more extended emission we have combined the eSMA data with SMA observations of the same molecules. The emission of C17^{17}O (3-2) and C34^{34}S (7-6) both show a velocity gradient oriented along a northeast-southwest direction with respect to the continuum marking the location of one of the components of the binary, IRAS16293A. Our combined eSMA and SMA observations show that the velocity field on the 50--400~AU scales is consistent with a rotating structure. It cannot be explained by simple Keplerian rotation around a single point mass but rather needs to take into account the enclosed envelope mass at the radii where the observed lines are excited. We suggest that IRAS 16293-2422 could be among the best candidates to observe a pseudo-disk with future high angular resolution observations.Comment: Accepted for publication in ApJ, 18 pages, 10 figure
    corecore