If the lighter top squark has no kinematically allowed two-body decays that
conserve flavor, then it will live long enough to form hadronic bound states.
The observation of the diphoton decays of stoponium could then provide a
uniquely precise measurement of the top squark mass. In this paper, we
calculate the cross section for the production of stoponium in a hadron
collider at next-to-leading order (NLO) in QCD. We present numerical results
for the cross section for production of stoponium at the LHC and study the
dependence on beam energy, stoponium mass, and the renormalization and
factorization scale. The cross-section is substantially increased by the NLO
corrections, counteracting a corresponding decrease found earlier in the NLO
diphoton branching ratio.Comment: 24 page