38,468 research outputs found
Recommended from our members
The neural basis of centre-surround interactions in visual motion processing
Perception of a moving visual stimulus can be suppressed or enhanced by surrounding context in adjacent parts of the visual field. We studied the neural processes underlying such contextual modulation with fMRI. We selected motion selective regions of interest (ROI) in the occipital and parietal lobes with sufficiently well defined topography to preclude direct activation by the surround. BOLD signal in the ROIs was suppressed when surround motion direction matched central stimulus direction, and increased when it was opposite. With the exception of hMT+/V5, inserting a gap between the stimulus and the surround abolished surround modulation. This dissociation between hMT+/V5 and other motion selective regions prompted us to ask whether motion perception is closely linked to processing in hMT+/V5, or reflects the net activity across all motion selective cortex. The motion aftereffect (MAE) provided a measure of motion perception, and the same stimulus configurations that were used in the fMRI experiments served as adapters. Using a linear model, we found that the MAE was predicted more accurately by the BOLD signal in hMT+/V5 than it was by the BOLD signal in other motion selective regions. However, a substantial improvement in prediction accuracy could be achieved by using the net activity across all motion selective cortex as a predictor, suggesting the overall conclusion that visual motion perception depends upon the integration of activity across different areas of visual cortex
Microscopic Derivation of Magnetic Flux Density Profiles, Magnetization Hysteresis Loops, and Critical Currents in Strongly Pinned Superconductors
We present a microscopic derivation, without electrodynamical assumptions, of
, , and , in agreement with experiments on
strongly pinned superconductors, for a range of values of the density and
strength of the pinning sites. We numerically solve the overdamped equations of
motion % dynamics of these flux-gradient-driven vortices which can be
temporarily trapped at pinning centers. The field is increased (decreased) by
the addition (removal) of flux lines at the sample boundary, and complete
hysteresis loops can be achieved by using flux lines with opposite orientation.
The pinning force per unit volume we obtain for strongly-pinned vortices, , interpolates between the following two extreme
situations: very strongly-pinned independent vortices, where , and the 2D Larkin-Ovchinikov collective-pinning theory for weakly-pinned
straight vortices, where . Here, and are
the density and maximum force of the pinning sites.Comment: 6 pages, 4 PostScript Figures, To be published in Phys. Rev. B,
10-1-9
Universality in snowflake aggregation
Aggregation of ice crystals is a key process governing precipitation. Individual ice crystals exhibit considerable diversity of shape, and a wide range of physical processes could influence their aggregation; despite this we show that a simple computer model captures key features of aggregate shape and size distribution reported recently from cirrus clouds. The results prompt a new way to plot the experimental size distributions leading to remarkably good dynamical scaling. That scaling independently confirms that there is a single dominant aggregation mechanism at play, albeit our model (based on undeflected trajectories to contact) does not capture its form exactly
Satellite versus ground-based estimates of burned area: a comparison between MODIS based burned area and fire agency reports over North America in 2007
North American wildfire management teams routinely assess burned area on site during firefighting campaigns; meanwhile, satellite observations provide systematic and global burned-area data. Here we compare satellite and ground-based daily burned area for wildfire events for selected large fires across North America in 2007 on daily timescales. In a sample of 26 fires across North America, we found the Global Fire Emissions Database Version 4 (GFED4) estimated about 80% of the burned area logged in ground-based Incident Status Summary (ICS-209) over 8-day analysis windows. Linear regression analysis found a slope between GFED and ICS-209 of 0.67 (with R = 0.96). The agreement between these data sets was found to degrade at short timescales (from R = 0.81 for 4-day to R = 0.55 for 2-day). Furthermore, during large burning days (> 3000 ha) GFED4 typically estimates half of the burned area logged in the ICS-209 estimates
The Indirect Limit on the Standard Model Higgs Boson Mass from the Precision FERMILAB, LEP and SLD Data
Standard Model fits are performed on the most recent leptonic and b quark Z
decay data from LEP and SLD, and FERMILAB data on top quark production, to
obtain and . Poor fits are obtained, with confidence levels
2%. Removing the b quark data improves markedly the quality of the fits and
reduces the 95% CL upper limit on by 50 GeV.Comment: 6 pages 3 tables i figur
Derivation of the Lorentz Force Law, the Magnetic Field Concept and the Faraday-Lenz Law using an Invariant Formulation of the Lorentz Transformation
It is demonstrated how the right hand sides of the Lorentz Transformation
equations may be written, in a Lorentz invariant manner, as 4--vector scalar
products. This implies the existence of invariant length intervals analogous to
invariant proper time intervals. This formalism, making essential use of the
4-vector electromagnetic potential concept, provides a short derivation of the
Lorentz force law of classical electrodynamics, the conventional definition of
the magnetic field, in terms of spatial derivatives of the 4--vector potential
and the Faraday-Lenz Law. An important distinction between the physical
meanings of the space-time and energy-momentum 4--vectors is pointed out.Comment: 15 pages, no tables 1 figure. Revised and extended version of
physics/0307133 Some typos removed and minor text improvements in this
versio
Activation of endocytosis as an adaptation to the mammalian host by trypanosomes
Immune evasion in African trypanosomes is principally mediated by antigenic variation, but rapid internalization of surface-bound immune factors may contribute to survival. Endocytosis is upregulated approximately 10-fold in bloodstream compared to procyclic forms, and surface coat remodeling accompanies transition between these life stages. Here we examined expression of endocytosis markers in tsetse fly stages in vivo and monitored modulation during transition from bloodstream to procyclic forms in vitro. Among bloodstream stages nonproliferative stumpy forms have endocytic activity similar to that seen with rapidly dividing slender forms, while differentiation of stumpy forms to procyclic forms is accompanied by rapid down-regulation of Rab11 and clathrin, suggesting that modulation of endocytic and recycling systems accompanies this differentiation event. Significantly, rapid down-regulation of endocytic markers occurs upon entering the insect midgut and expression of Rab11 and clathrin remains low throughout subsequent development, which suggests that high endocytic activity is not required for remodeling the parasite surface or for survival within the fly. However, salivary gland metacyclic forms dramatically increase expression of clathrin and Rab11, indicating that emergence of mammalian infective forms is coupled to reacquisition of a high-activity endocytic-recycling system. These data suggest that high-level endocytosis in Trypanosoma brucei is an adaptation required for viability in the mammalian host
- …
