29,141 research outputs found
The Underlying Event in Hard Scattering Processes
We study the behavior of the "underlying event" in hard scattering
proton-antiproton collisions at 1.8 TeV and compare with the QCD Monte-Carlo
models. The "underlying event" is everything except the two outgoing hard
scattered "jets" and receives contributions from the "beam-beam remnants" plus
initial and final-state radiation. The data indicate that neither ISAJET or
HERWIG produce enough charged particles (with PT > 0.5 GeV/c) from the
"beam-beam remnant" component and that ISAJET produces too many charged
particles from initial-state radiation. PYTHIA which uses multiple parton
scattering to enhance the "underlying event" does the best job describing the
data.Comment: RevTex4, 18 pages, 29 figures, contribution to Snowmass 200
Using Collider Event Topology in the Search for the Six-Jet Decay of Top Quark-Antiquark Pairs
We investigate the use of the event topology as a tool in the search for the
six-jet decay of top-pair production in proton-antiproton collisions at 1.8
TeV. Modified Fox-Wolfram "shape" variables, H_i, are employed to help
distinguish the top-pair signal from the ordinary QCD multi-jet background. The
H's can be constructed directly from the calorimeter cells or from jets. Events
are required to lie in a region of H-space defined by L_i < H_i < R_i for
i=1,...,,6, where the left, L_i, and right, R_i, cuts are determined by a
genetic algorithm (GA) procedure to maximize the signal over the square root of
the background. We are able to reduce the background over the signal to less
than a factor of 100 using purely topological methods without using jet
multiplicity cuts and without the aid of b-quark tagging.Comment: LaTeX, 19 pages, 13 figure
The automated multi-stage substructuring system for NASTRAN
The substructuring capability developed for eventual installation in Level 16 is now operational in a test version of NASTRAN. Its features are summarized. These include the user-oriented, Case Control type control language, the automated multi-stage matrix processing, the independent direct access data storage facilities, and the static and normal modes solution capabilities. A complete problem analysis sequence is presented with card-by-card description of the user input
Bioengineering Lantibiotics for Therapeutic Success
peer-reviewedSeveral examples of highly modified antimicrobial peptides have been described.
While many such peptides are non-ribosomally synthesized, ribosomally synthesized
equivalents are being discovered with increased frequency. Of the latter group, the
lantibiotics continue to attract most attention. In the present review, we discuss the
implementation of in vivo and in vitro engineering systems to alter, and even enhance,
the antimicrobial activity, antibacterial spectrum and physico-chemical properties,
including heat stability, solubility, diffusion and protease resistance, of these compounds.
Additionally, we discuss the potential applications of these lantibiotics for use as
therapeutics.DF,CH,PC,RR are supported by the Irish Government under the National Development Plan, through a Science Foundation Ireland (SFI) Technology and Innovation Development Award
(TIDA14/TIDA/2286) to DF, a SFI Investigator awards to CH and RR (10/IN.1/B3027),SFI-PIfunding(11/PI/1137) to PDC and the Alimentary Pharmabiotic Centre under Grant Number SFI/12/RC/2273
Thermal photon to dilepton ratio in ultra-relativistic heavy ion collisions
The ratio of transverse momentum distribution of thermal photons to dilepton
has been evaluated. It is observed that this ratio reaches a plateau beyond a
certain value of transverse momentum. We argue that this ratio can be used to
estimate the initial temperature of the system by selecting the transverse
momentum and invariance mass windows judiciously. It is demonstrated that if
the radial flow is large then the plateau disappear and hence a deviation from
the plateau can be used as an indicator of large radial flow. The sensitivity
of the results on various input parameters has been studied.Comment: 9 pages with 11 eps figure
Jets associated with Z^0 boson production in heavy-ion collisions at the LHC
The heavy ion program at the LHC will present unprecedented opportunities to
probe hot QCD matter, that is, the quark gluon plasma (QGP). Among these
exciting new probes are high energy partons associated with the production of a
Z^0 boson, or Z^0 tagged jets. Once produced, Z^0 bosons are essentially
unaffected by the strongly interacting medium produced in heavy-ion collisions,
and therefore provide a powerful signal of the initial partonic energy and
subsequent medium induced partonic energy loss. When compared with theory,
experimental measurements of Z^0 tagged jets will help quantify the jet
quenching properties of the QGP and discriminate between different partonic
energy loss formalisms. In what follows, I discuss the advantages of tagged
jets over leading particles, and present preliminary results of the production
and suppression of Z^0 tagged jets in relativistic heavy-ion collisions at LHC
energies using the Guylassy-Levai-Vitev (GLV) partonic energy loss formalism.Comment: To appear in the proceedings of the 2010 Winter Workshop on Nuclear
Dynamics, which was held in Ocho Rios, Jamaica, mon
Interaction of a Modulated Electron Beam with a Plasma
The results of a theoretical and experimental investigation of the high-frequency interaction of an electron beam with a plasma are reported. An electron beam, modulated at a microwave frequency, passes through a uniform region of a mercury arc discharge after which it is demodulated. Exponentially growing wave amplification along the electron beam was experimentally observed for the first time at a microwave frequency equal to the plasma frequency. Approximate theories of the effects of 1) plasma-electron collision frequencies, 2) plasma-electron thermal velocities and 3) finite beam diameter, are given. In a second experiment the interaction between a modulated electron beam and a slow electrostatic wave on a plasma column has been studied. A strong interaction occurs when the velocity of the electron beam is approximately equal to the velocity of the wave and the interaction is essentially the same as that which occurs in traveling-wave amplifiers, except that here the plasma colum replaces the usual helical slow-wave circuit. The theory predicting rates of growth is presented and compared with the experimental results
Shadowing Effects on the Nuclear Suppression Factor, R_dAu, in d+Au Interactions
We explore how nuclear modifications to the nucleon parton distributions
affect production of high transverse momentum hadrons in deuteron-nucleus
collisions. We calculate the charged hadron spectra to leading order using
standard fragmentation functions and shadowing parameterizations. We obtain the
d+Au to pp ratio both in minimum bias collisions and as a function of
centrality. The minimum bias results agree reasonably well with the BRAHMS data
while the calculated centrality dependence underestimates the data and is a
stronger function of p_T than the data indicate.Comment: 18 pages, 3 figures, final version, Phys. Rev. C in pres
Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?
peer-reviewedBacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more effectively targeted by bacteriocins in food settings.KE, DF, CH, PC, MR, RR are supported by the Irish Government under the National Development Plan, through the Food Institutional Research Measure, administered by the Department of Agriculture, Fisheries and Food, Ireland (DAFM 13/F/462) to PC and MR, a Science Foundation Ireland (SFI) Technology and Innovation Development Award (TIDA 14/TIDA/2286) to DF, SFI-PI funding (11/PI/1137) to PDC and the APC Microbiome Insitute under Grant Number SFI/12/RC/2273
Transverse and longitudinal momentum spectra of fermions produced in strong SU(2) fields
We study the transverse and longitudinal momentum spectra of fermions
produced in a strong, time-dependent non-Abelian SU(2) field. Different
time-dependent field strengths are introduced. The momentum spectra are
calculated for the produced fermion pairs in a kinetic model. The obtained
spectra are similar to the Abelian case, and they display exponential or
polynomial behaviour at high p_T, depending on the given time dependence. We
investigated different color initial conditions and discuss the recognized
scaling properties for both Abelian and SU(2) cases.Comment: 10 pages, 11 figures; version accepted to PR
- …
