13 research outputs found

    T1T2T_{1}-T_{2} dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes

    Get PDF
    Dual-mode MRI contrast agents consisting of superparamagnetic iron oxide nanoparticle (SPION) cores and gadolinium ions associated with the ionic chitosan protecting layer were synthesized and studied. Gadolinium ions were introduced into the coating layer via direct complex formation on the nanoparticles surface, covalent attachment or electrostatically driven deposition of the preformed Gd complex. The modified SPIONs having hydrodynamic diameters ca. 100 nm form stable, well-defined dispersions in water and have excellent magnetic properties. Physiochemical prop- erties of those new materials were characterized using e.g., FTIR spectroscopy, dynamic light scattering, X-ray fluorescence, TEM, and vibrating sample mag- netometry. They behave as superparamagnetics and shorten both T 1 and T 2 proton relaxation times, thus influencing both r 1 and r 2 relaxivity values that reach 53.7 and 375.5 mM - 1 s - 1 , respectively, at 15 MHz. The obtained materials can be considered as highly effective contrast agents for low-field MRI, particu- larly useful at permanent magnet-based scanners

    Fabrication of functional carbon/magnetic nanocomposites as a promising model of utilization of used crosslinked polymers

    Get PDF
    The utilization of used crosslinked functional polymers (CFP) applied as sorbents or ion-exchangers is a great challenge arising from the need to protect the environment. In this paper we report a very promising way of obtaining carbon/magnetic composites based on metal (Co2+; Ni2+; Fe3+) derivatives of butadiene rubber-based phosphorus-containing polymer, which were treated as the model used CFP. We proposed a facile one-step thermal degradation approach to transform used CFP into carbon/magnetic composites (CMC). The obtained CMCs contained a mixture of metal phosphates and metal phosphides that exhibited strong magnetic properties due to the presence of nanosized metal derivatives with diameters of 100⁻140 nm. Structural and morphological changes of CFP and CMC after thermal degradation were investigated by the FTIR technique, X-ray Diffraction analysis, Scanning Electron Microscope, and Atomic Force Microscope⁻Magnetic Force Microscope. Moreover, thermal degradation kinetics parameters were determined to optimize the efficiency of the process

    Dynamics of superparamagnetic iron oxide nanoparticles with various polymeric coatings

    Get PDF
    In this article, the results of a study of the magnetic dynamics of superparamagnetic iron oxide nanoparticles (SPIONs) with chitosan and polyethylene glycol (PEG) coatings are reported. The materials were prepared by the co-precipitation method and characterized by X-ray diffraction, dynamic light scattering and scanning transmission electron microscopy. It was shown that the cores contain maghemite, and their hydrodynamic diameters vary from 49 nm for PEG-coated to 200 nm for chitosan-coated particles. The magnetic dynamics of the nanoparticles in terms of the function of temperature was studied with magnetic susceptometry and Mössbauer spectroscopy. Their superparamagnetic fluctuations frequencies, determined from the fits of Mössbauer spectra, range from tens to hundreds of megahertz at room temperature and mostly decrease in the applied magnetic field. For water suspensions of nanoparticles, maxima are observed in the absorption part of magnetic susceptibility and they shift to higher temperatures with increasing excitation frequency. A step-like decrease of the susceptibility occurs at freezing, and from that, the Brown’s and Néel’s contributions are extracted and compared for nanoparticles differing in core sizes and types of coating. The results are analyzed and discussed with respect to the tailoring of the dynamic properties of these nanoparticle materials for requirements related to the characteristic frequency ranges of MRI and electromagnetic field hyperthermia

    Magnetic properties of collagen-chitosan hybrid materials with immobilized superparamagnetic iron oxide nanoparticles (SPIONs)

    No full text
    The paper presents results of our studies on hybrid materials based on polymers of natural origin containing superparamagnetic iron oxide nanoparticles (SPIONs). Such nanoparticles, coated with the chitosan derivative, were immobilized in a chitosan-collagen hydrogel matrix by crosslinking with genipin. Three types of biopolymer matrices of different collagen-to-chitosan ratios were studied. A thorough magnetic characterization was performed, including magnetic susceptibility, magnetization, and hysteresis loop measurements in a temperature range of 4 K to 300 K and a magnetic field induction up to 8 Tesla. The effect of SPION immobilization and material composition on the magnetic properties of the hybrids was investigated. The results showed that hybrid materials with covalently bounded SPIONs preserved the superparamagnetic character of SPIONs and exhibited promising magnetic properties, which are important for their potential applications

    Biopolymer-based hydrogels as injectable materials for tissue repair scaffolds

    No full text
    The progress in tissue regeneration is strongly dependent on the development of biocompatible materials with properties resembling those of a native tissue. Also, the application of noninvasive methods of delivering the scaffold into the tissue defect is of great importance. In this study we present a group of biopolymer-based materials as potential injectable scaffolds. In contrast to other studies involving collagen neutralization or additional incubation of gel in genipin solution, we propose collagen and collagen-chitosan gels crosslinked in situ with genipin. Since some parameters of the cells should be considered in the microscale, the steady-state fluorescence anisotropy was applied to study the microenvironment of the gels. To our knowledge we are the first to report on microrheological properties, such as gel time and microviscosity, for this group of hydrogels. Rapid gelation at physiological temperatures found makes these materials of special interest in applications requiring gel injectability. Physico-chemical investigation showed the influence of the crosslinking agent concentration and chitosan addition on the crosslinking degree, swelling ratio, gel microviscosity, and the degradation rate. Strong correlation was revealed between the surface wettability and the viability of cultured mesenchymal stem cells. Cytotoxicity studies indicated that the collagen-chitosan hydrogels showed the best biocompatibility

    Bioactive hydrogel-nanosilica hybrid materials : a potential injectable scaffold for bone tissue engineering

    No full text
    Novel bioactive organic–inorganic hybrid materials that can serve as injectable hydrogel systems for bone tissue regeneration were obtained. The silica nanoparticles (SiNP) prepared in situ by the Stöber method were dispersed in collagen, collagen-chitosan or chitosan sols, which were then subsequently crosslinked. Laser scanning confocal microscopy studies, in which fluorescent SiNP were applied, and SEM images indicated that the nanosilica particles were distributed in the whole volume of the hydrogel matrix. In vitro studies on fibroblast cell viability indicated that the hybrid materials are biocompatible. The silica nanoparticles dispersed in the biopolymer matrix had a positive effect on cell viability. Studies on the mineralization process under simulated body fluid (SBF) conditions confirmed the bioactivity of prepared materials. SEM images revealed mineral phase formation in the majority of the hybrid materials developed. EDS analysis indicated that these mineral phases are mainly composed of calcium and phosphorus. The XRD studies confirmed that mineral phases formed during SBF incubation of hybrid materials based on collagen are bone-like apatite minerals. The silica nanoparticles added to the hydrogel at the stage of synthesis induced the occurrence of mineralization. This process occurs not only at the surface of the material but in its entire volume, which is important for the preparation of scaffolds for bone tissue engineering. The ability of these materials to undergo in situ gelation under physiological temperature and their bioactivity as well as biocompatibility make them interesting candidates for bioactive injectable systems

    Magnetically navigated core-shell polymer capsules as nanoreactors loadable at the oil/water interface

    No full text
    Polymer core–shell nanocapsules with magnetic nanoparticles embedded in their oil cores were fabricated and applied as nano­(photo)­reactors. Superparamagnetic iron oxide nanoparticles (SPIONs) coated with oleic acid were first synthesized and characterized structurally, and their magnetic properties were determined. The capsules with chitosan-based shells were then formed in a one-step process by sonication-assisted mixing of (1) an aqueous solution of the hydrophobically derived chitosan and (2) oleic acid containing the dispersed SPIONs. In this way, magnetic capsules with a diameter of approximately 500–600 nm containing encapsulated SPIONs with an average diameter of approximately 20–30 nm were formed as revealed by dynamic light scattering and scanning transmission electron microscopy measurements. The composition and magnetic properties of the formed capsules were also followed using dynamic light scattering, electron microscopies, and magnetic force microscopy. The water-dispersible capsules, thanks to their magnetic properties, were then navigated in a static magnetic field gradient and transferred between the water and oil phases, as evidenced by fluorescence microscopy. In this way, the capsules could be loaded in a controlled way with a hydrophobic reactant, perylene, which was later photooxidized upon transferring the capsules to the aqueous phase. The capsules were shown to serve as robust reloadable nanoreactors/nanocontainers that via magnetic navigation can be transferred between immiscible phases without disruption. These features make them promising reusable systems not only for loading and carrying lipophilic actives, conducting useful reactions in the confined environment of the capsules, but also for magnetically separating and guiding the encapsulated active molecules to the site of action
    corecore